首页 >
布拉格定律
✍ dations ◷ 2024-11-05 18:34:07 #布拉格定律
在物理学中,布拉格定律给出晶格的相干及不相干散射角度。当X射线入射于原子时,跟任何电磁波一样,它们会使电子云移动。电荷的运动把波动以同样的频率再发射出去(会因其他各种效应而变得有点模糊);这种现象叫瑞利散射(或弹性散射)。散射出来的波可以再相互散射,但这种进级散射在这里是可以忽略的。当中子波与原子核或不成对电子的相干自旋进行相互作用时,会发生一种与上述电磁波相近的过程。这些被重新发射出来的波来相互干涉,可能是相长的,也可能是相消的(重叠的波某程度上会加起来产生更强的波峰,或相互消抵),在探测器或底片上产生衍射图样。而所产生的波干涉图样就是衍射分析的基本部分。这种解析叫布拉格衍射。布拉格衍射(又称X射线衍射的布拉格形式),最早由威廉·劳伦斯·布拉格及威廉·亨利·布拉格于1913年提出,他们早前发现了固体在反射X射线后产生的晶体线(与其他物态不同,例如液体),而这项定律正好解释了这样一种效应。他们发现,这些晶体在特定的波长及入射角时,反射出来的辐射会形成集中的波峰(叫布拉格尖峰)。布拉格衍射这个概念同样适用于中子衍射及电子衍射 。中子及X射线的波长都于原子间距离(~150 pm)相若,因此它们很适合在这种长度作“探针”之用。威廉·劳伦斯·布拉格使用了一个模型来解释这个结果,模型中晶体为一组各自分离的平行平面,相邻平面间的距离皆为一常数d。他的解释是,如果各平面反射出来的X射线成相长干涉的话,那么入射的X射线经晶体反射后会产生布拉格尖峰。当相位差为2π及其倍数时,干涉为相长的;这个条件可经由布拉格定律表示:其中n为整数,λ为入射波的波长,d为原子晶格内的平面间距,而θ则为入射波与散射平面间的夹角。注意移动中的粒子,包括电子、质子和中子,都有对应其速度及质量的德布罗意波长。布拉格定律由物理学家威廉·劳伦斯·布拉格爵士于1912年推导出来,并于1912年11月11日首度于剑桥哲学会中发表。尽管很简单,布拉格定律确立了粒子在原子大小下的存在,同时亦为晶体研究了提供了有效的新工具──X射线及中子衍射。威廉·劳伦斯·布拉格及其父,威廉·亨利·布拉格爵士获授1915年诺贝尔物理学奖,原因为晶体结构测定的研究,他们测定了氯化钠、硫化锌及钻石的结构。 他们是唯一一队同时获奖的父子队伍,而威廉·劳伦斯·布拉格时年25岁,因此成了最年轻的诺贝尔奖得主。当电磁辐射或亚原子粒子波的波长,与进入的晶体样本的原子间距长度相若时,就会产生布拉格衍射,入射物会被系统中的原子以镜面形式散射出去,并会按照布拉格定律所示,进行相长干涉。对于晶质固体,波被晶格平面所散射,各相邻平面间的距离为d。当被各平面散射出去的波进行相长干涉时,它们的相位依然相同,因此每一波的路径长度皆为波长的整数倍。进行相长干涉两波的路径差为
2
d
sin
θ
{displaystyle {begin{smallmatrix}2dsin theta end{smallmatrix}}}
,其中
θ
{displaystyle {begin{smallmatrix}theta end{smallmatrix}}}
为散射角。由此可得布拉格定律,它所描述的是晶格中相邻晶体平面(由米勒指数h、k及l 标记),产生相长干涉的条件 :其中n为整数,按各项参数大小而定,而λ则为波长。通过量度散射后入射波的强度,并将之表示成入射角的函数,可得干涉图样。在干涉图样中,当散射波满足布拉格条件,就会产生非常强的强度,它们叫布拉格尖峰。尽管很多人都以为布拉格定律量度的是实空间中的原子距离,但事实并不是这样的。在布拉格实验中,只有在量度的距离与晶格图中的d成反比时,第一陈述才似乎会是正确的。而且,从布拉格定律的
n
λ
{displaystyle nlambda }
项,可以看出定律量度两排原子间到底能放多少个波长,因此它所量度的是倒距离。倒晶格矢量描述的是某组晶格平面,它是这组平面的法矢量,其长度为
G
=
2
π
/
d
{displaystyle G=2pi /d}
。马克斯·冯·劳厄用矢量形式正确地诠释了倒晶格矢量,并得出以他命名的劳厄方程:其中
G
→
{displaystyle {vec {G}}}
为倒晶格矢量,而
k
f
→
{displaystyle {vec {k_{f}}}}
及
k
i
→
{displaystyle {vec {k_{i}}}}
为入射及衍射束的波矢。弹性散射条件
|
k
f
|
=
|
k
i
|
{displaystyle |k_{f}|=|k_{i}|}
,及散射角
2
θ
{displaystyle 2theta }
与上式结合后,基本上与布拉格方程等效。这是因为动量转移守恒的缘故。在这个系统中,其扫掠变量可以是长度、入射方向或出射波矢,其中波矢与系统中的能量及角度弥散有关。衍射角与Q空间的关系可用一简单的式子表示:倒晶格是一晶格的傅里叶空间,在晶格上应用完整的波动力学时,这个概念是不可或缺的。设一单色波(任何种类),进入一组对齐的平面晶格点,其平面间距为
d
{displaystyle d}
,入射角为
θ
{displaystyle theta }
,如右图所示。波被晶格点A反射后会沿AC'行进,而没有被反射的波则沿AB继续行进,被晶格点B反射后路径为BC。AC'与BC间存在路径差,表达式为只有在路径差等于波长的整数倍时,这两股分开的波,在到达某一点时,会是同相位的,才会因此产生相长干涉,故相长干涉的产生条件为其中
n
{displaystyle n}
与
λ
{displaystyle lambda }
的定义同上。从上图可见,由此可得,组合上述各式,得简化后可得:即布拉格定律。胶体晶体(英语:Colloidal crystal)为一种非常有序(英语:Order and disorder (physics))的粒子阵列,可以在大范围内形成(长度从几微米到几毫米不等),而且可被看作原子及分子晶体的类比。球状粒子的周期性阵列,会形成出相似的空隙阵列,而这种阵列可被用作可见光的衍射光栅,尤其是当空隙与入射波长为同一数量级的时候。因此,科学家们在很多年前就发现了,由于相斥库仑相互作用的关系,水溶液中的带电荷高分子,会表现出大范围的类晶体相互关联,当中粒子间距一般会比粒子直径要大得多。在自然的所有这种例子中,都可到看到一样的漂亮构造色(或晃动的色彩),这都可以归功于可见光波的相长干涉,而此时光波会满足布拉格条件,跟结晶固体的X射线衍射类似。就跟上文提过的那样,布拉格定律可用于计算某立方晶系的晶格间距,关系式如下:其中
a
{displaystyle a}
为立方晶体的晶格间距,而
h
{displaystyle h}
、
k
{displaystyle k}
及
l
{displaystyle l}
则为布拉格平面的密勒指数,将上式与布拉格定律结合可得:我们可以推导出各种不同立方布拉维晶格的密勒指数选择定则;以下是其种几种晶格的选择定则。这些选择定则可用于对应晶体结构下的任何晶体。尽管氯化钠呈现面心立方的结构,但是由于氯离子跟钠离子的大小相近,因此衍射图样实质上跟简单立方结构一致,只是各项晶体参数都小了一半。其他结构的选择定则可在各种相关的参考文献中找到,也可以自行推导出来。
相关
- 药理学药理学(英语:Pharmacology),是研究药品与有机体(含病原体)相互作用及作用规律的学科。它既研究药品对生物的作用及作用机制,即药品效应动力学(Pharmacodynamics,简称药效学);也研究药品
- 散囊菌纲散囊菌目(学名:Eurotiomycetes)是子囊菌门盘菌亚门之下的一个纲。散囊菌目原来分为以下三个分类:医学导航 · 真菌病真菌 · 分类疾病药物(抗真菌药)
- 水泡水泡(英语:Blister),或称水疱,是皮肤表层聚积一小包体液的现象,体液可以是淋巴液、血清、血浆、血液、脓等,通常是由于摩擦、灼伤、冻伤、化学品接触、感染引起的。水泡内通常为清
- 生殖细胞生殖细胞(英语:germ cell)是进行有性生殖的生物体在产生配子的过程中任何一个细胞的总称。在许多动物中,原始生殖细胞源自于胚胎的原线,并经由卵黄囊区(yolk sac)迁移至原基性腺的
- 维多里奥·狄西嘉维多里奥·狄西嘉(意大利语:Vittorio De Sica,1901年7月7日-1974年11月13日)是一位意大利导演与演员,也是电影史上一位相当重要的导演,四次奥斯卡最佳外语片获奖导演。
- 龙舌兰酒龙舌兰酒(西班牙文:Tequila),是墨西哥产、使用龙舌兰草的心(Piña,在植物学上,指的是这种植物的鳞茎部分)为原料所制造出的含酒精饮品,属蒸馏酒一类。通常提到龙舌兰酒时,可能意指的是
- 莫尔比昂省莫尔比昂省(法语:Morbihan,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentiu
- 卡尔·恩斯特·冯·贝尔卡尔·恩斯特·冯·贝尔(德语:Karl Ernst von Baer 1792年2月28日-1876年11月28日)波罗的海德意志人科学家、探险家,贝尔还是博物学家、生物学家、地质学家、气象学家和地理学家
- 克里斯琴·B·安芬森克里斯蒂安·伯默尔·安芬森(英语:Christian Boehmer Anfinsen,1916年3月26日-1995年5月14日),出生于美国宾夕法尼亚州莫内森,美国生物化学家,他和斯坦福·摩尔与威廉·霍华德·斯坦
- 遁天神盗《遁天神盗》又名《幻影车神》是2004年的印度电影,可以说是一部武打剧情片。此片当年在印度获得成功,两年后还续拍了《遁天神盗 2》。本片开头,一群强盗竟斗胆在光天化日之下搶