临界稳定

✍ dations ◷ 2025-12-05 20:24:52 #动力系统,稳定性理论

临界稳定(marginally stable)是在动力系统及控制理论中,针对系统稳定性的描述,线性时不变系统若不是渐近稳定,但也不是不稳定,就属于临界稳定。系统若会回到某特定状态,而且会维持在该状态附近(称为稳态),即为稳定。若系统不受限制地离原状态越来越远,即为不稳定。临界稳定的系统介于上述二个情形之间,若离某一稳态一段距离,系统不会回到稳态,但也不会不受限制地偏离稳态。临界稳定有时也称为是随遇稳定(neutral stability)。

临界稳定和不稳定都是在控制理论中要设法避免的。理想的控制系统会希望在受到外扰扰动后,当外扰消除后,系统可以回到理想的状态。因此需要设计控制算法以达到此一目的。

在计量经济学中,若观察的时间序列中有出现单位根 ,表示有临界稳定,可能会让自变量和因变量的回归分析无效,除非利用适当技术,将系统转换为稳定系统才能改善此一情形。

齐次(英语:homogeneous differential equation)连续线性时不变系统为临界稳定的充份必要条件是:系统传递函数中每个极点的实部都为非正值,且其中有一个或多个极点实部为零,且均为相异的单根,而其他的极点实部为负值。若所有的极点实部都是负值,系统渐近稳定,若有极点实部为正,则系统不稳定。

若系统是以状态空间来表示,可以推导其若尔当标准型,再分析是否临界稳定:系统临界稳定当且仅当其对于实部为0的若尔当区块为标量。

齐次离散线性时不变系统为为临界稳定的充份必要条件是,传递函数中极点绝对值的最大值为1,且绝对值为1的极点都是相异的单根。也就是说,传递函数的谱半径为1,若谱半径小于1,系统会收敛。

以下是一个一阶线性差分方程(英语:linear difference equation)的例子:假设状态变数的方程如下

其参数 > 0。若系统受扰动,偏离 x 0 , {\displaystyle x_{0},} < 1,不论启始值 x 0 , {\displaystyle x_{0},} > 1,数值会渐渐变到无限大。但若 = 1,数列不会发散,也不会收敛,数列会维持 x 0 . {\displaystyle x_{0}.} = 1的例子即为临界稳定。

临界稳定是指一系统若给予有限振幅的狄拉克δ函数为输入,系统不会发散到无限大,但也不会收敛到零。输出会持续出现一定大小的偏移或是振荡,一般而言也不会有最终的稳态输出。若连续系统输入的频率恰好是纯虚数极点对应的频率,系统输出会无限制的增加(即为共振)。这也就是针对有界输入有界输出稳定性系统,其极点实部需要为负值(不只是非正值而已)的原因。

若连续系统有纯虚数的极点,其输出会有持续的振荡。例如没有阻尼的二阶系统,也就是没有阻尼及摩擦力,弹簧为理想弹簧的弹簧-质量系统即为一例,此时会持续的振荡。另一个例子是没有摩擦力的单摆,其系统在原点处也是临界稳定。

若要临界稳定,需要有极点恰好在虚轴(连续时间系统)上或是在单位圆(离散时间系统)上,因此在实际系统中,除非此系统在本质上就有这种特性,不然很少出现这样的系统。

在随机过程中,临界稳定也是很重要的概念,例如有些过程会依循离散时间下的随机游走

其中 e t {\displaystyle e_{t}} 是独立同分布的误差,此方程有单位根 (计量经济学)(其特征方程(英语:characteristic equation (of difference equation))的特征值有出现1),因此会有临界稳定,需要使用特殊的时间序列技巧,以经验方式为有此方程的系统进行建模。

相关

  • 各地联合国组织列表除联合国秘书处总部外,联合国在以欧洲为主的全球各地另设有其附属机构、相关组织的总部。在各国城市当中,以瑞士日内瓦为最多联合国组织设置办事处或总部的城市,其中包括世界贸
  • 固体固体是物质存在的一种状态,是四种基本物质状态之一。与液体和气体相比,固体有固定的体积及形状,形状也不会随着容器形状而改变。固体的质地较液体及气体坚硬,固体的原子之间有紧
  • 化脓脓是一种黄色或黄白色液体,是动物身体在发炎反应中所生成的物质,脓在周围组织所堆积而成的区域称为脓疮。这些液体,是由死亡或存活的白血球细胞所制造。脓存于患部内触碰会有疼
  • 克劳迪奥·蒙台威尔第克劳迪奥·乔瓦尼·安东尼奥·蒙特威尔第(意大利语:Claudio Giovanni Antonio Monteverdi,1567年5月15日-1643年11月29日),意大利作曲家、制琴师。出生于意大利北部克雷莫纳市的他
  • 55S核糖体线粒体核糖体是存在于真核细胞线粒体内的一种核糖体,负责完成线粒体这种细胞器中进行的翻译过程。线粒体核糖体的沉降系数介干55S-56S之间,是已发现的沉降系数最小的核糖体。
  • 布鲁克斯县布鲁克斯县(Brooks County, Georgia)是位于美国乔治亚州南部的一个县,南界佛罗里达州。面积1,289平方公里。根据美国2000年人口普查,共有人口16,450人,2005年估计人口为16,327人
  • 灾害灾害,又称为灾难、灾祸、灾厄、灾患、祸患、浩劫,是对能够给人类和人类赖以生存的环境造成破坏性影响的事物总称。灾害不表示程度,通常指局部,可以扩张和发展,演变成灾难。如蝗虫
  • 公开市场操作公开市场操作(Open market operation)是中央银行释出或回收基础货币,调节市场流动性的主要货币政策工具,透过中央银行与指定交易商进行有价证券和外汇交易,达成调整货币政策之目
  • 西冷西冷为印尼万丹省的首府,位于爪哇岛的西北角,北部临爪哇海,西部与喀拉喀托火山隔巽他海峡相望。泗水万隆
  • 鲁塞尼亚鲁塞尼亚(Ruthenia)是东欧的一个历史地名,包括现在的白俄罗斯、乌克兰北部、俄罗斯西部、小部分的斯洛伐克东北部和极少部分的波兰东部。首度出现在西欧的时间大约1360年,但指的