临界稳定

✍ dations ◷ 2024-12-22 21:43:40 #动力系统,稳定性理论

临界稳定(marginally stable)是在动力系统及控制理论中,针对系统稳定性的描述,线性时不变系统若不是渐近稳定,但也不是不稳定,就属于临界稳定。系统若会回到某特定状态,而且会维持在该状态附近(称为稳态),即为稳定。若系统不受限制地离原状态越来越远,即为不稳定。临界稳定的系统介于上述二个情形之间,若离某一稳态一段距离,系统不会回到稳态,但也不会不受限制地偏离稳态。临界稳定有时也称为是随遇稳定(neutral stability)。

临界稳定和不稳定都是在控制理论中要设法避免的。理想的控制系统会希望在受到外扰扰动后,当外扰消除后,系统可以回到理想的状态。因此需要设计控制算法以达到此一目的。

在计量经济学中,若观察的时间序列中有出现单位根 ,表示有临界稳定,可能会让自变量和因变量的回归分析无效,除非利用适当技术,将系统转换为稳定系统才能改善此一情形。

齐次(英语:homogeneous differential equation)连续线性时不变系统为临界稳定的充份必要条件是:系统传递函数中每个极点的实部都为非正值,且其中有一个或多个极点实部为零,且均为相异的单根,而其他的极点实部为负值。若所有的极点实部都是负值,系统渐近稳定,若有极点实部为正,则系统不稳定。

若系统是以状态空间来表示,可以推导其若尔当标准型,再分析是否临界稳定:系统临界稳定当且仅当其对于实部为0的若尔当区块为标量。

齐次离散线性时不变系统为为临界稳定的充份必要条件是,传递函数中极点绝对值的最大值为1,且绝对值为1的极点都是相异的单根。也就是说,传递函数的谱半径为1,若谱半径小于1,系统会收敛。

以下是一个一阶线性差分方程(英语:linear difference equation)的例子:假设状态变数的方程如下

其参数 > 0。若系统受扰动,偏离 x 0 , {\displaystyle x_{0},} < 1,不论启始值 x 0 , {\displaystyle x_{0},} > 1,数值会渐渐变到无限大。但若 = 1,数列不会发散,也不会收敛,数列会维持 x 0 . {\displaystyle x_{0}.} = 1的例子即为临界稳定。

临界稳定是指一系统若给予有限振幅的狄拉克δ函数为输入,系统不会发散到无限大,但也不会收敛到零。输出会持续出现一定大小的偏移或是振荡,一般而言也不会有最终的稳态输出。若连续系统输入的频率恰好是纯虚数极点对应的频率,系统输出会无限制的增加(即为共振)。这也就是针对有界输入有界输出稳定性系统,其极点实部需要为负值(不只是非正值而已)的原因。

若连续系统有纯虚数的极点,其输出会有持续的振荡。例如没有阻尼的二阶系统,也就是没有阻尼及摩擦力,弹簧为理想弹簧的弹簧-质量系统即为一例,此时会持续的振荡。另一个例子是没有摩擦力的单摆,其系统在原点处也是临界稳定。

若要临界稳定,需要有极点恰好在虚轴(连续时间系统)上或是在单位圆(离散时间系统)上,因此在实际系统中,除非此系统在本质上就有这种特性,不然很少出现这样的系统。

在随机过程中,临界稳定也是很重要的概念,例如有些过程会依循离散时间下的随机游走

其中 e t {\displaystyle e_{t}} 是独立同分布的误差,此方程有单位根 (计量经济学)(其特征方程(英语:characteristic equation (of difference equation))的特征值有出现1),因此会有临界稳定,需要使用特殊的时间序列技巧,以经验方式为有此方程的系统进行建模。

相关

  • 惊恐发作恐慌发作(Panic attack)的意义为患者在强烈恐惧下,表现出一系列的身心症状。(常见换气过度或气喘)当恐慌发作,患者会感受到强烈不适,因此常求助于急诊室。一个人在一生中可能出现极
  • 大会会员资格 请参阅关于大会会员资格的两篇文章:联合国大会(简称联大)是联合国主要机构之一。联大首次会议于1946年1月10日在伦敦卫理公会中央礼堂召开,有来自51个国家的代表参与了
  • 青壮年青壮年(young adult)一般是指年龄在30岁至40岁(或41岁)周岁年纪的成人,不过也有不同的定义(例如爱利克·埃里克森提出的埃里克森社会心理发展阶段等)。成人在青壮年之后的阶段称为
  • 牙列齿列(亦作牙列、齿系、牙系)指的是动物口腔中全套牙齿的发育和排列模式。除单孔目、贫齿目、穿山甲属和鲸目以外,所有哺乳动物都具备四种类型的牙齿,而且每一类型的牙齿,与物种相
  • 欧洲核子研究组织欧洲核子研究中心(法语:Organisation Européenne pour la Recherche Nucléaire;英文:European Organization for Nuclear Research,通常被简称为CERN,由Conseil européen pour
  • 加勒比海盗《加勒比海盗2:聚魂棺》(英语:Pirates of the Caribbean: Dead Man's Chest)是一部2006年的美国历险奇幻喜剧电影,是2003年同类电影《加勒比海盗:黑珍珠号的诅咒》的续集,加勒比海
  • 清洁剂清洁剂是具有清洁功能的化学品,可以是纯净物,也可是混合物。清洁剂基本上都为水溶液。除此之外,组分还有:以下是几种常用的清洁剂:
  • 天蝎座天蝎座(拉丁语:Scorpius,天文符号:♏),是一个位于南天球的黄道带星座之一,面积496.78平方度,占全天面积的1.204%,在全天88个星座中,面积排行第三十三。每年6月3日子夜天蝎座中心经过上
  • 全球暖化大骗局《全球暖化大骗局》(The Great Global Warming Swindle)是由英国电视导演马丁·德肯(英语:Martin Durkin)执导的纪录片,于2007年3月8日上映。左派阵营指控“全球变暖”的科学观点
  • 八大电视八大电视股份有限公司(英语:Gala Television Corporation),简称八大、GTV,成立于1997年6月13日,2014年至今由台塑永在投资公司持有,主要是经营“八大第一台”、“八大综合台”、“