首页 >
电荷密度
✍ dations ◷ 2025-11-29 12:15:39 #电荷密度
在电磁学里,电荷密度是一种度量,用以描述空间中连续电荷的分布状况。依据讨论电磁模型的维度而定,电荷密度可以是线电荷密度、面电荷密度或体电荷密度。假设电荷分布于一条曲线或一根直棒子,则其线电荷密度是每单位长度的电荷密度,单位为库仑/米 (coulomb/meter) 。假设电荷分布于一个平面或一个物体的表面,则其面电荷密度是每单位面积的电荷密度,单位为库仑/米2。假设电荷分布于一个三维空间的某区域或物体内部,则其体电荷密度是每单位体积的电荷密度,单位为库仑/米3。由于在大自然里,有两种电荷,正电荷和负电荷,所以,电荷密度可能会是负值。电荷密度也可能会跟位置有关。特别注意,不要将电荷密度与电荷载子密度 (charge carrier density) 搞混了。电荷密度与电荷载子的体积有关。例如,由于锂阳离子的半径比较小,它的体电荷密度大于钠阳离子的体电荷密度。假设,一个体积为
V
{displaystyle V}
的载电体,其电荷密度
ρ
0
{displaystyle rho _{0}}
是均匀的,跟位置无关,那么,总电荷量
Q
{displaystyle Q}
为假设,在某一区域内有
N
{displaystyle N}
个离散的点电荷,像电子。那么,电荷密度可以用狄拉克δ函数来表达为其中,
r
{displaystyle mathbf {r} }
是检验位置,
q
i
{displaystyle q_{i}}
是位置为
r
i
{displaystyle mathbf {r} _{i}}
的第
i
{displaystyle i}
个点电荷的电量。在量子力学里,类氢原子的中心有一个正电性的原子核,环绕着原子核四周的一个电子的轨域,其电荷密度可以用波函数
ψ
(
r
)
{displaystyle psi (mathbf {r} )}
表达为其中,
q
{displaystyle q}
是电子的电荷量。注意到
|
ψ
(
r
)
|
2
{displaystyle |psi (mathbf {r} )|^{2}}
是找到电子的概率。经过归一化,在全部空间找到电子的概率是例如,氢原子的波函数
ψ
n
l
m
(
r
)
{displaystyle psi _{nlm}(mathbf {r} )}
是其中,
R
n
l
{displaystyle R_{nl}}
是径向函数,
Y
l
m
(
θ
,
ϕ
)
{displaystyle Y_{l}^{m}(theta ,,phi )}
是球谐函数,
n
{displaystyle n}
是主量子数,
l
{displaystyle l}
是角量子数,
m
{displaystyle m}
是磁量子数。从相对论的角度来论述,导线的长度与观察者的移动速度有关,所以电荷密度是一种相对论性观念。安东尼·法兰碁(Anthony French)在他的著作中表明,移动中的电荷密度会产生磁场力,会吸引或排斥其它载流导线。。使用闵可夫斯基图,法兰碁阐明,一条中性的载流导线,对于处于移动参考系的观察者而言,为什么会貌似载有净电荷密度。通过时空坐标,研究电磁现象的领域称为相对论性电磁学(relativistic electromagnetism)。电荷密度与电流密度之间的关系式为:其中,
r
{displaystyle mathbf {r} }
是位置,
t
{displaystyle t}
是时间,
J
{displaystyle mathbf {J} }
是电流密度。在电磁理论里,从麦克斯韦方程组,可以推导出电荷守恒的连续方程。根据加入位移电流项目后的安培定律,其中,
B
{displaystyle mathbf {B} }
是磁场,
E
{displaystyle mathbf {E} }
是电场,
μ
0
{displaystyle mu _{0}}
是磁常数,
ϵ
0
{displaystyle epsilon _{0}}
是电常数。取散度于方程的两边:由于旋度的散度等于零,再根据高斯定律,可以得到想要的关系式换另外一种比较直觉的推导方法。流入某体积
V
{displaystyle mathbb {V} }
的净电流为其中,
I
{displaystyle I}
是电流,
S
{displaystyle mathbb {S} }
是包围体积
V
{displaystyle mathbb {V} }
的闭曲面,
d
r
2
{displaystyle mathrm {d} mathbf {r} ^{2}}
是微小面矢量元素,垂直于
S
{displaystyle mathbb {S} }
从体积内朝外指出。应用散度定理,将这方程写为总电荷量
Q
{displaystyle Q}
与体积
V
{displaystyle mathbb {V} }
内的电荷密度
ρ
{displaystyle rho }
的关系为电荷守恒要求,流入体积
V
{displaystyle mathbb {V} }
的净电流,等于体积
V
{displaystyle mathbb {V} }
内总电荷量
Q
{displaystyle Q}
的变率:所以,对于任意体积
V
{displaystyle mathbb {V} }
,上述方程都成立。所以,可以将被积式提取出来:在一个体积区域
V
′
{displaystyle mathbb {V} '}
内,源位置
r
′
{displaystyle mathbf {r} '}
的电荷密度为
ρ
(
r
′
)
{displaystyle rho (mathbf {r} ')}
的电荷分布,所产生在场位置
r
{displaystyle mathbf {r} !}
的电势为其中,
d
3
r
′
{displaystyle mathrm {d} ^{3}{r}'}
是微小体积元素。电场
E
{displaystyle mathbf {E} }
是电势的负梯度:应用矢量关系式取散度于电场,可以得到高斯定律的微分形式和泊松方程
相关
- 目目(英语:order, 拉丁语:ordo)是生物分类法中的一个分类级别,是位于纲和科之间的级别:物种属于和不属于每个目是由生物分类学家决定的,和是否应该认可一个特定的目。 通常没有确切
- 西布兰诺人西布兰诺人(学名:Homo cepranensis)是一个于1994年发现的人属头颅骨。这个化石是在意大利罗马东南89公里弗罗西诺内省的西布兰诺发现。这个化石比西班牙前人的化石还要古老,估计
- 颈卵器颈卵器,又称藏卵器,是某些植物产生及含有卵子或雌配子的多细胞配子体结构或器官。颈卵器有一个长颈和一个膨胀的基部。颈卵器一般长在植物叶状体的表面上。颈卵器在裸子植物的
- 黄酮类化合物黄酮类化合物(英语:Flavonoid,又称类黄酮)基于2-苯基色原酮-4-酮(2-苯基-1-苯并吡喃(英语:Benzopyran)-4-酮)骨架的黄酮类化合物,如右图所示,基本母核为2-苯基色原酮类化合物,现在则泛指
- span style=color:#ffffff;经济/span希腊在2010年2月,政府欠债3千亿欧元,无力偿债而导致国家破产,其他欧元区国家担心希腊的危机会对他们造成重大冲击。希腊名列欧猪五国之一,酿成欧洲主权债务危机,在2011年几乎导致
- 柏辽兹埃克托·路易·柏辽兹(法语:Hector Louis Berlioz,1803年12月11日-1869年3月8日),又译白辽士,法国作曲家,以1830年写的《幻想交响曲》闻名。柏辽兹的父亲是一名医生,他亦早年学医,1821
- 澳门大学列表澳门大学列表列出澳门10所高等院校,当中4所为公立,6所为私立。
- 尼德兰人的血脉《尼德兰人的血脉》(荷兰语:Wien Neêrlands Bloed)又译《荷兰人血统》,是荷兰1815年至1932年间的国歌。1815年,比利时与荷兰合并为荷兰王国,并开始探讨征集新国歌。早在荷兰共和
- 氢动力汽车氢动力汽车分为两种,氢内燃汽车(HICEV)是以内燃机燃烧氢气(通常透过分解甲烷或电解水取得)及空气中的氧产生动力,推动的汽车。而氢燃料电池汽车(Fuel cell vehicle-FCEV)是使氢
- 翟明国翟明国(1947年12月-),河南济源人,中国前寒武纪地质与变质地质学家。2009年当选中国科学院地学部院士。中国科学院地质与地球物理研究所研究员。1976年毕业于西北大学地质系,1982年
