电荷密度

✍ dations ◷ 2025-10-20 08:17:52 #电荷密度
在电磁学里,电荷密度是一种度量,用以描述空间中连续电荷的分布状况。依据讨论电磁模型的维度而定,电荷密度可以是线电荷密度、面电荷密度或体电荷密度。假设电荷分布于一条曲线或一根直棒子,则其线电荷密度是每单位长度的电荷密度,单位为库仑/米 (coulomb/meter) 。假设电荷分布于一个平面或一个物体的表面,则其面电荷密度是每单位面积的电荷密度,单位为库仑/米2。假设电荷分布于一个三维空间的某区域或物体内部,则其体电荷密度是每单位体积的电荷密度,单位为库仑/米3。由于在大自然里,有两种电荷,正电荷和负电荷,所以,电荷密度可能会是负值。电荷密度也可能会跟位置有关。特别注意,不要将电荷密度与电荷载子密度 (charge carrier density) 搞混了。电荷密度与电荷载子的体积有关。例如,由于锂阳离子的半径比较小,它的体电荷密度大于钠阳离子的体电荷密度。假设,一个体积为 V {displaystyle V} 的载电体,其电荷密度 ρ 0 {displaystyle rho _{0}} 是均匀的,跟位置无关,那么,总电荷量 Q {displaystyle Q} 为假设,在某一区域内有 N {displaystyle N} 个离散的点电荷,像电子。那么,电荷密度可以用狄拉克δ函数来表达为其中, r {displaystyle mathbf {r} } 是检验位置, q i {displaystyle q_{i}} 是位置为 r i {displaystyle mathbf {r} _{i}} 的第 i {displaystyle i} 个点电荷的电量。在量子力学里,类氢原子的中心有一个正电性的原子核,环绕着原子核四周的一个电子的轨域,其电荷密度可以用波函数 ψ ( r ) {displaystyle psi (mathbf {r} )} 表达为其中, q {displaystyle q} 是电子的电荷量。注意到 | ψ ( r ) | 2 {displaystyle |psi (mathbf {r} )|^{2}} 是找到电子的概率。经过归一化,在全部空间找到电子的概率是例如,氢原子的波函数 ψ n l m ( r ) {displaystyle psi _{nlm}(mathbf {r} )} 是其中, R n l {displaystyle R_{nl}} 是径向函数, Y l m ( θ , ϕ ) {displaystyle Y_{l}^{m}(theta ,,phi )} 是球谐函数, n {displaystyle n} 是主量子数, l {displaystyle l} 是角量子数, m {displaystyle m} 是磁量子数。从相对论的角度来论述,导线的长度与观察者的移动速度有关,所以电荷密度是一种相对论性观念。安东尼·法兰碁(Anthony French)在他的著作中表明,移动中的电荷密度会产生磁场力,会吸引或排斥其它载流导线。。使用闵可夫斯基图,法兰碁阐明,一条中性的载流导线,对于处于移动参考系的观察者而言,为什么会貌似载有净电荷密度。通过时空坐标,研究电磁现象的领域称为相对论性电磁学(relativistic electromagnetism)。电荷密度与电流密度之间的关系式为:其中, r {displaystyle mathbf {r} } 是位置, t {displaystyle t} 是时间, J {displaystyle mathbf {J} } 是电流密度。在电磁理论里,从麦克斯韦方程组,可以推导出电荷守恒的连续方程。根据加入位移电流项目后的安培定律,其中, B {displaystyle mathbf {B} } 是磁场, E {displaystyle mathbf {E} } 是电场, μ 0 {displaystyle mu _{0}} 是磁常数, ϵ 0 {displaystyle epsilon _{0}} 是电常数。取散度于方程的两边:由于旋度的散度等于零,再根据高斯定律,可以得到想要的关系式换另外一种比较直觉的推导方法。流入某体积 V {displaystyle mathbb {V} } 的净电流为其中, I {displaystyle I} 是电流, S {displaystyle mathbb {S} } 是包围体积 V {displaystyle mathbb {V} } 的闭曲面, d r 2 {displaystyle mathrm {d} mathbf {r} ^{2}} 是微小面矢量元素,垂直于 S {displaystyle mathbb {S} } 从体积内朝外指出。应用散度定理,将这方程写为总电荷量 Q {displaystyle Q} 与体积 V {displaystyle mathbb {V} } 内的电荷密度 ρ {displaystyle rho } 的关系为电荷守恒要求,流入体积 V {displaystyle mathbb {V} } 的净电流,等于体积 V {displaystyle mathbb {V} } 内总电荷量 Q {displaystyle Q} 的变率:所以,对于任意体积 V {displaystyle mathbb {V} } ,上述方程都成立。所以,可以将被积式提取出来:在一个体积区域 V ′ {displaystyle mathbb {V} '} 内,源位置 r ′ {displaystyle mathbf {r} '} 的电荷密度为 ρ ( r ′ ) {displaystyle rho (mathbf {r} ')} 的电荷分布,所产生在场位置 r {displaystyle mathbf {r} !} 的电势为其中, d 3 r ′ {displaystyle mathrm {d} ^{3}{r}'} 是微小体积元素。电场 E {displaystyle mathbf {E} } 是电势的负梯度:应用矢量关系式取散度于电场,可以得到高斯定律的微分形式和泊松方程

相关

  • 无壁菌门柔膜细菌目(英语:Mollicutes)软壁菌门(Tenericutes),又译作无壁菌门,是细菌界下的一个门。该门下有一个纲,即柔膜细菌纲(英语:Mollicutes)(Mollicutes)。该门命名于1984年。该门下的典型
  • 八角八角(学名:Illicium verum),又称八角茴香、大料和大茴香(在某些地方,大茴香指的不是八角),是木兰藤目八角属的一种植物。其同名的干燥果实是中国菜和东南亚地区烹饪的调味料之一。树
  • 萨丁岛坐标:40°00′N 09°00′E / 40.000°N 9.000°E / 40.000; 9.000撒丁岛(意大利语:Sardegna,,撒丁语:Sardìgna, Sardìnnia)位于意大利半岛的西南方,是地中海的第二大岛,仅次于西西
  • 肌腱退化肌腱病变(英语:Tendinopathy),又称肌腱炎(英语:Tendinitis)或肌腱退化(英语:Tendinosis),是一种肌腱的疾患,可造成疼痛、局部肿胀、与功能障碍。典型的疼痛会随着肢体动作而变得明显。好
  • 老后老年(英语:old age),一般指生物的生命周期一个阶段,即中年到死亡的一段时间不同的文化圈对于老年人有着不同的定义。由于生命的周期是一个渐变的过程,壮年到老年的分界线往往是很
  • 奥斯塔谷瓦莱达奥斯塔(意大利语:Valle d'Aosta,法语:Vallée d'Aoste;阿皮坦语:Vâl d'Aoûta,Valle意为山谷)是意大利西北部的一个多山的大区,也是意大利面积最小的大区,面积3,263平方公里,人
  • 哥伦比亚号哥伦比亚号航天飞机(STS Columbia OV-102)是美国国家航空航天局(NASA)所属的航天飞机之一。哥伦比亚号是美国的航天飞机机队中第一架正式服役的,它在1981年4月12日首次执行代号ST
  • 铁器铁器是以铁为主要金属的一种器物类型,铁质自然界中含铁数量颇多。然而其融熔温度在摄氏一千度以上故早期人类无法锻造。直到精致炭及鼓风技术发明后才逐渐应用。目前最早使用
  • 库尔特·哥德尔库尔特·弗雷德里希·哥德尔(德语:Kurt Friedrich Gödel,1906年4月28日-1978年1月14日),出生于奥匈帝国的数学家、逻辑学家和哲学家,维也纳学派(维也纳小组)的成员。哥德尔是二十世
  • 零售产品 · 定价 · 分销 服务 · 零售 · 宣传 品牌管理 · 大客户营销 营销道德 · 营销效果 营销调查 · 市场调查 市场划分 · 营销战略 市场优势 · 操