电荷密度

✍ dations ◷ 2025-04-04 11:17:01 #电荷密度
在电磁学里,电荷密度是一种度量,用以描述空间中连续电荷的分布状况。依据讨论电磁模型的维度而定,电荷密度可以是线电荷密度、面电荷密度或体电荷密度。假设电荷分布于一条曲线或一根直棒子,则其线电荷密度是每单位长度的电荷密度,单位为库仑/米 (coulomb/meter) 。假设电荷分布于一个平面或一个物体的表面,则其面电荷密度是每单位面积的电荷密度,单位为库仑/米2。假设电荷分布于一个三维空间的某区域或物体内部,则其体电荷密度是每单位体积的电荷密度,单位为库仑/米3。由于在大自然里,有两种电荷,正电荷和负电荷,所以,电荷密度可能会是负值。电荷密度也可能会跟位置有关。特别注意,不要将电荷密度与电荷载子密度 (charge carrier density) 搞混了。电荷密度与电荷载子的体积有关。例如,由于锂阳离子的半径比较小,它的体电荷密度大于钠阳离子的体电荷密度。假设,一个体积为 V {displaystyle V} 的载电体,其电荷密度 ρ 0 {displaystyle rho _{0}} 是均匀的,跟位置无关,那么,总电荷量 Q {displaystyle Q} 为假设,在某一区域内有 N {displaystyle N} 个离散的点电荷,像电子。那么,电荷密度可以用狄拉克δ函数来表达为其中, r {displaystyle mathbf {r} } 是检验位置, q i {displaystyle q_{i}} 是位置为 r i {displaystyle mathbf {r} _{i}} 的第 i {displaystyle i} 个点电荷的电量。在量子力学里,类氢原子的中心有一个正电性的原子核,环绕着原子核四周的一个电子的轨域,其电荷密度可以用波函数 ψ ( r ) {displaystyle psi (mathbf {r} )} 表达为其中, q {displaystyle q} 是电子的电荷量。注意到 | ψ ( r ) | 2 {displaystyle |psi (mathbf {r} )|^{2}} 是找到电子的概率。经过归一化,在全部空间找到电子的概率是例如,氢原子的波函数 ψ n l m ( r ) {displaystyle psi _{nlm}(mathbf {r} )} 是其中, R n l {displaystyle R_{nl}} 是径向函数, Y l m ( θ , ϕ ) {displaystyle Y_{l}^{m}(theta ,,phi )} 是球谐函数, n {displaystyle n} 是主量子数, l {displaystyle l} 是角量子数, m {displaystyle m} 是磁量子数。从相对论的角度来论述,导线的长度与观察者的移动速度有关,所以电荷密度是一种相对论性观念。安东尼·法兰碁(Anthony French)在他的著作中表明,移动中的电荷密度会产生磁场力,会吸引或排斥其它载流导线。。使用闵可夫斯基图,法兰碁阐明,一条中性的载流导线,对于处于移动参考系的观察者而言,为什么会貌似载有净电荷密度。通过时空坐标,研究电磁现象的领域称为相对论性电磁学(relativistic electromagnetism)。电荷密度与电流密度之间的关系式为:其中, r {displaystyle mathbf {r} } 是位置, t {displaystyle t} 是时间, J {displaystyle mathbf {J} } 是电流密度。在电磁理论里,从麦克斯韦方程组,可以推导出电荷守恒的连续方程。根据加入位移电流项目后的安培定律,其中, B {displaystyle mathbf {B} } 是磁场, E {displaystyle mathbf {E} } 是电场, μ 0 {displaystyle mu _{0}} 是磁常数, ϵ 0 {displaystyle epsilon _{0}} 是电常数。取散度于方程的两边:由于旋度的散度等于零,再根据高斯定律,可以得到想要的关系式换另外一种比较直觉的推导方法。流入某体积 V {displaystyle mathbb {V} } 的净电流为其中, I {displaystyle I} 是电流, S {displaystyle mathbb {S} } 是包围体积 V {displaystyle mathbb {V} } 的闭曲面, d r 2 {displaystyle mathrm {d} mathbf {r} ^{2}} 是微小面矢量元素,垂直于 S {displaystyle mathbb {S} } 从体积内朝外指出。应用散度定理,将这方程写为总电荷量 Q {displaystyle Q} 与体积 V {displaystyle mathbb {V} } 内的电荷密度 ρ {displaystyle rho } 的关系为电荷守恒要求,流入体积 V {displaystyle mathbb {V} } 的净电流,等于体积 V {displaystyle mathbb {V} } 内总电荷量 Q {displaystyle Q} 的变率:所以,对于任意体积 V {displaystyle mathbb {V} } ,上述方程都成立。所以,可以将被积式提取出来:在一个体积区域 V ′ {displaystyle mathbb {V} '} 内,源位置 r ′ {displaystyle mathbf {r} '} 的电荷密度为 ρ ( r ′ ) {displaystyle rho (mathbf {r} ')} 的电荷分布,所产生在场位置 r {displaystyle mathbf {r} !} 的电势为其中, d 3 r ′ {displaystyle mathrm {d} ^{3}{r}'} 是微小体积元素。电场 E {displaystyle mathbf {E} } 是电势的负梯度:应用矢量关系式取散度于电场,可以得到高斯定律的微分形式和泊松方程

相关

  • 心律失常心脏节律不整(拉丁语:Cardiac Arrhythmia/Cardiac Dysrhythmia; 法语:Rythme cardiaque irrégulier;英语:Irregular Heartbeat,通称:心律不正、心律失常、心律失常、心律不齐),是指心
  • 后工业化后工业社会是社会科学名词,指涉开始自1960年代的工业社会转型出现的社会现象,该词最早出自法国社会学家阿兰·图赖讷,后由美国社会学家丹尼尔·贝尔的著作《后工业社会的来临》
  • 垃圾食物垃圾食品(英语:Junk Food,或称垃圾食物)是指被认为不健康的食品,WHO所提示的不健康食品是以比较的方式呈现,比如高能量且高蔗糖高脂肪的饮食比低能量饮食(比如水果或蔬菜)不健康;每日
  • VIBbr /6固体、 液体、 气体6族元素(常称铬族元素)是指元素周期表上第6族(ⅥB 族)的元素,位于5族元素和7族元素之间。6族元素包含铬(Cr)、钼(Mo)、钨(W)、
  • Johns Hopkins University Press约翰斯·霍普金斯大学出版社(英语:Johns Hopkins University Press,也由以约翰霍普金斯大学出版社或JHUP的简称)是约翰斯·霍普金斯大学的出版部门。它始建于1878年,拥有在美国连
  • 亚变种在植物分类学中,变种(拉丁文:varietas,简称写做 var.)为一种分类级别,位于种与亚种之下、变型(英语:Form (botany))之上;作为种下分类群,生物学名会采用三名法。有一种枕形仙人掌“Esco
  • 颚胃动物门颚胃动物门(学名:Gnathostomulida)是动物界的一个门。这类无体腔的动物体型很小,生活在浅海细砂间,于1956年发现。目前已记录了18个属,大约有100种。
  • 伊施嫩纳法典《伊施嫩纳法典》,又称《埃什南纳法令》,是古代的法典,刻在两片楔形文字泥板上,在伊拉克巴格达的阿布哈尔迈勒丘出土,其成文时间早于前18世纪的《汉穆拉比法典》。在1945年和1947
  • 配糖键糖苷键(英语:Glycosidic bond,旧称配糖键)是指特定类型的化学键,连接糖苷分子中的非糖部分(即苷元)与糖基,或者糖基与糖基。含有配糖键的物质称为糖苷(或配糖体)。根据与糖基异头碳原
  • 李洪钟李洪钟(1941年-),中国化学工程专家。中国科学院过程工程研究所研究员。生于山西昔阳。1965年毕业于太原理工大学化学工程系,1981年获中国科学技术大学硕士学位,1986年获中国科学院