首页 >
电荷密度
✍ dations ◷ 2025-07-16 05:27:27 #电荷密度
在电磁学里,电荷密度是一种度量,用以描述空间中连续电荷的分布状况。依据讨论电磁模型的维度而定,电荷密度可以是线电荷密度、面电荷密度或体电荷密度。假设电荷分布于一条曲线或一根直棒子,则其线电荷密度是每单位长度的电荷密度,单位为库仑/米 (coulomb/meter) 。假设电荷分布于一个平面或一个物体的表面,则其面电荷密度是每单位面积的电荷密度,单位为库仑/米2。假设电荷分布于一个三维空间的某区域或物体内部,则其体电荷密度是每单位体积的电荷密度,单位为库仑/米3。由于在大自然里,有两种电荷,正电荷和负电荷,所以,电荷密度可能会是负值。电荷密度也可能会跟位置有关。特别注意,不要将电荷密度与电荷载子密度 (charge carrier density) 搞混了。电荷密度与电荷载子的体积有关。例如,由于锂阳离子的半径比较小,它的体电荷密度大于钠阳离子的体电荷密度。假设,一个体积为
V
{displaystyle V}
的载电体,其电荷密度
ρ
0
{displaystyle rho _{0}}
是均匀的,跟位置无关,那么,总电荷量
Q
{displaystyle Q}
为假设,在某一区域内有
N
{displaystyle N}
个离散的点电荷,像电子。那么,电荷密度可以用狄拉克δ函数来表达为其中,
r
{displaystyle mathbf {r} }
是检验位置,
q
i
{displaystyle q_{i}}
是位置为
r
i
{displaystyle mathbf {r} _{i}}
的第
i
{displaystyle i}
个点电荷的电量。在量子力学里,类氢原子的中心有一个正电性的原子核,环绕着原子核四周的一个电子的轨域,其电荷密度可以用波函数
ψ
(
r
)
{displaystyle psi (mathbf {r} )}
表达为其中,
q
{displaystyle q}
是电子的电荷量。注意到
|
ψ
(
r
)
|
2
{displaystyle |psi (mathbf {r} )|^{2}}
是找到电子的概率。经过归一化,在全部空间找到电子的概率是例如,氢原子的波函数
ψ
n
l
m
(
r
)
{displaystyle psi _{nlm}(mathbf {r} )}
是其中,
R
n
l
{displaystyle R_{nl}}
是径向函数,
Y
l
m
(
θ
,
ϕ
)
{displaystyle Y_{l}^{m}(theta ,,phi )}
是球谐函数,
n
{displaystyle n}
是主量子数,
l
{displaystyle l}
是角量子数,
m
{displaystyle m}
是磁量子数。从相对论的角度来论述,导线的长度与观察者的移动速度有关,所以电荷密度是一种相对论性观念。安东尼·法兰碁(Anthony French)在他的著作中表明,移动中的电荷密度会产生磁场力,会吸引或排斥其它载流导线。。使用闵可夫斯基图,法兰碁阐明,一条中性的载流导线,对于处于移动参考系的观察者而言,为什么会貌似载有净电荷密度。通过时空坐标,研究电磁现象的领域称为相对论性电磁学(relativistic electromagnetism)。电荷密度与电流密度之间的关系式为:其中,
r
{displaystyle mathbf {r} }
是位置,
t
{displaystyle t}
是时间,
J
{displaystyle mathbf {J} }
是电流密度。在电磁理论里,从麦克斯韦方程组,可以推导出电荷守恒的连续方程。根据加入位移电流项目后的安培定律,其中,
B
{displaystyle mathbf {B} }
是磁场,
E
{displaystyle mathbf {E} }
是电场,
μ
0
{displaystyle mu _{0}}
是磁常数,
ϵ
0
{displaystyle epsilon _{0}}
是电常数。取散度于方程的两边:由于旋度的散度等于零,再根据高斯定律,可以得到想要的关系式换另外一种比较直觉的推导方法。流入某体积
V
{displaystyle mathbb {V} }
的净电流为其中,
I
{displaystyle I}
是电流,
S
{displaystyle mathbb {S} }
是包围体积
V
{displaystyle mathbb {V} }
的闭曲面,
d
r
2
{displaystyle mathrm {d} mathbf {r} ^{2}}
是微小面矢量元素,垂直于
S
{displaystyle mathbb {S} }
从体积内朝外指出。应用散度定理,将这方程写为总电荷量
Q
{displaystyle Q}
与体积
V
{displaystyle mathbb {V} }
内的电荷密度
ρ
{displaystyle rho }
的关系为电荷守恒要求,流入体积
V
{displaystyle mathbb {V} }
的净电流,等于体积
V
{displaystyle mathbb {V} }
内总电荷量
Q
{displaystyle Q}
的变率:所以,对于任意体积
V
{displaystyle mathbb {V} }
,上述方程都成立。所以,可以将被积式提取出来:在一个体积区域
V
′
{displaystyle mathbb {V} '}
内,源位置
r
′
{displaystyle mathbf {r} '}
的电荷密度为
ρ
(
r
′
)
{displaystyle rho (mathbf {r} ')}
的电荷分布,所产生在场位置
r
{displaystyle mathbf {r} !}
的电势为其中,
d
3
r
′
{displaystyle mathrm {d} ^{3}{r}'}
是微小体积元素。电场
E
{displaystyle mathbf {E} }
是电势的负梯度:应用矢量关系式取散度于电场,可以得到高斯定律的微分形式和泊松方程
相关
- 脑内出血颅内出血(ICH)是头部颅骨内出血。这种情况可能导致血液或血块压迫到脑神经造成脑神经坏死。颅内出血包含:脑室内出血(英语:intraventricular bleed)和脑实质性出血(英语:intraparenc
- 癌癌(Carcinoma),有翻译为恶性上皮细胞肿瘤,是癌症的一种。在医学上专指由上皮组织来源的恶性肿瘤,其它由结缔组织来源的恶性肿瘤只称作恶性肿瘤,如:肌肉或骨骼的恶性肉瘤(Sarcoma)、黑
- 分离焦虑症分离焦虑症(SAD)是一种焦虑症,其中个体对于从家庭或个人对个体具有强烈情感依恋(例如父母,看护者,重要的其他或兄弟姐妹)的分离经历过度焦虑。通常在6-7个月至3岁之间的婴儿和小孩
- VIAbr /16固体、 液体、 气体氧族元素是指元素周期表上第16族(ⅥA族)的元素,位于氮族元素和卤素之间。氧族元素包含氧(O)、硫(S)、硒(Se)、碲(Te)、钋(Po)、钅立(Lv),其中氧、硫、硒为非金属,碲为类金
- 南瓜籽南瓜籽是自南瓜(或其他南瓜属植物)的种子,可以食用,外形扁平,呈鹅蛋形,颜色绿色,但会有一层白色的膜,也有一些有些品种的南瓜子没有膜。南瓜籽相当营养、有大量的蛋白质、膳食纤维以
- 睫状体睫状体是眼球壁葡萄膜的中部环形增厚部分,宽约6毫米,通过晶状体悬韧带与晶状体相连。内表面有许多突出并呈放射状排列的皱褶,外表面有睫状肌(平滑肌),在睫状肌和晶状体之间有透
- 脊索动物脊索动物门(学名:Chordata)是指有脊索,或其在演化过程退化而被脊椎取代的动物。是动物界生态位最顶级的门。少数学者提出将半索动物门也置于脊索动物门下,并命名为口索动物亚门。
- 哈尔·葛宾·科拉纳哈尔·葛宾·科拉纳(英语:Har Gobind Khorana,1922年1月9日-2011年11月9日),生于英属印度,印度裔美国分子生物学家。他在1968年,因为解出了遗传密码,而与罗伯特·威廉·霍利以及马歇
- 能动性移动性(英语:motility,又称运动性、活动性)是生物学术语,意指能自发且独立地移动。此一名词可以应用在单细胞和多细胞的生命体上头。在细胞生物学和生医工程中,移动性通常是指细胞
- 快中子反应堆快中子增殖反应堆(Fast breeder reactor),或称快中子滋生反应堆、快滋生反应堆、快堆等,是一种核子反应器,核燃料和一颗快中子在核分裂后产生更多的中子,且利用增殖性材料吸收快中