权重

✍ dations ◷ 2025-08-23 06:40:32 #测绘学,误差理论

权即由测量值精度的不同在平差计算中所取的权重不同。精度越高,权越大。

求权的基本公式为

p i = μ 2 m i 2 ( i = 1 , 2 ) {\displaystyle p_{i}={\frac {\mu ^{2}}{m_{i}^{2}}}(i=1,2\ldots )}

式中, μ {\displaystyle \mu } 是任意常数, m i {\displaystyle m_{i}} 是中误差。由此可见,权与中误差平方成反比,即精度越高,权越大。应用上式求一组观测值的权 p i {\displaystyle p_{i}} 时,必须采用同一个 μ {\displaystyle \mu } 值。

由该定义式,可以看出,当 m i = μ {\displaystyle m_{i}=\mu } 时, p i = 1 {\displaystyle p_{i}=1} ,所以 μ {\displaystyle \mu } 是权等于1的观测值的中误差,通常称权等于1的权为单位权,权为1的观测值为单位权观测值。而 μ {\displaystyle \mu } 为单位权观测值的中误差,简称为单位权中误差。

可以写出各观测值的权之间的比例关系:

p 1 : p 2 : : p n = μ 2 m 1 2 : μ 2 m 2 2 : : μ 2 m n 2 = 1 m 1 2 : 1 m 2 2 : : 1 m n 2 {\displaystyle p_{1}:p_{2}:\dots :p_{n}={\frac {\mu ^{2}}{m_{1}^{2}}}:{\frac {\mu ^{2}}{m_{2}^{2}}}:\ldots :{\frac {\mu ^{2}}{m_{n}^{2}}}={\frac {1}{m_{1}^{2}}}:{\frac {1}{m_{2}^{2}}}:\ldots :{\frac {1}{m_{n}^{2}}}}

可知,一组观测值的权之比等于他们的中误差平方的倒数之比。不论假设 μ {\displaystyle \mu } 取何值,这组权之间的比例关系不变。所以,权反映了观测值之间的相互精度关系。就计算p值来说,不在乎权本身数值的大小,而在于确定他们之间的比例关系。 m i {\displaystyle m_{i}} 可以是同一个量的观测中误差,也可以是不同量的观测中误差,即权可以反映同一量的若干个观测值之间的精度高低,也可以反映不同量的观测值之间的精度高低。

同精度丈量时,边长的权与边长成反比。

当每公里水准测量的精度相同时,水准路线观测高差的权与路线长度成反比。

当各测站观测高差的精度相同时,水准路线观测高差的权与测站数成反比。

由不同个数的同精度观测值求得得算术平均值,其权与观测值个数成正比。

设有独立观测值 L 1 , L 2 , , L n {\displaystyle L_{1},L_{2},\ldots ,L_{n}} ,它们的标准差及权分别为 m 1 , m 2 , , m n {\displaystyle m_{1},m_{2},\ldots ,m_{n}} p 1 , p 2 , , p n {\displaystyle p_{1},p_{2},\ldots ,p_{n}} 。令观测值函数为:

z = f ( L 1 , L 2 L n ) {\displaystyle z=f(L_{1},L_{2}\ldots L_{n})}

由误差传播及定权公式,得

μ 2 p z = ( f L 1 ) 2 μ 2 p 1 + ( f L 2 ) 2 μ 2 p 1 + + ( f L n ) 2 μ 2 p n {\displaystyle {\frac {\mu ^{2}}{p_{z}}}=\left({\frac {\partial f}{\partial L_{1}}}\right)^{2}{\frac {\mu ^{2}}{p_{1}}}+\left({\frac {\partial f}{\partial L_{2}}}\right)^{2}{\frac {\mu ^{2}}{p_{1}}}+\ldots +\left({\frac {\partial f}{\partial L_{n}}}\right)^{2}{\frac {\mu ^{2}}{p_{n}}}}

式中 ( f L n ) {\displaystyle \left({\frac {\partial f}{\partial L_{n}}}\right)} 是常量,用 f i {\displaystyle f_{i}} 表示,上式约去 μ 2 {\displaystyle \mu ^{2}} 后得

1 p z = f 1 2 1 p 1 + f 2 2 1 p 2 + + f n 2 1 p n = {\displaystyle {\frac {1}{p_{z}}}=f_{1}^{2}{\frac {1}{p_{1}}}+f_{2}^{2}{\frac {1}{p_{2}}}+\ldots +f_{n}^{2}{\frac {1}{p_{n}}}=\left}

这就是独立观测值权倒数与其函数权倒数之间关系的表达式。这个表达式成为权倒数传播律。

广义算术平均值的权,等于观测值权之和。

p x = {\displaystyle p_{x}=}

相关

  • 高铁血红蛋白血症正铁血红蛋白血症(methemoglobinemia),或高铁血红蛋白症、变性血色蛋白血症、变性血红素血症、变性红血球血症、急性变性血红素症,是指因血液中异常的出现过多不能带氧的正铁血
  • 横结肠横结肠是结肠的一部分,位于腹腔上部,前与升结肠以直角向左侧水平移行,在脾脏下方以直角转弯往下接于降结肠。横结肠前部由大网膜悬挂在胃下,后方则由横结肠系膜与腹后壁相连。
  • 二羟基丙酮二羟基丙酮,丙糖的一种,为白色潮解结晶粉末,有凉的甜味和特征性气味。是最简单的酮糖。无手性中心,故无光学活性。通常以二聚体存在,二聚体可缓慢溶于1份水与15份乙醇的混合液中
  • 积极行动肯定性行动(英语:Affirmative action),又称为优惠性差别待遇、积极平权措施、平权法案、矫正歧视措施等,是指防止对肤色、种族、宗教、性别、国族出身等少数群体或弱势群体歧视的
  • 无限阶三角形镶嵌在几何学中,无限阶三角形镶嵌是一种位于双曲平面仿紧空间镶嵌图形,由正三角形组成,在施莱夫利符号中用{3,∞}来表示,考克斯特-迪肯符号(英语:Coxeter-Dynkin diagram)中以表示。每
  • 犬种犬种是指一个类群的狗,它们有着很相似且几乎一样的外表、行为,或是两者,这主要是因为它们来自一群有着相同特征的祖先。对特定特征的小狗的选育已有上千年以上的历史。一开始选
  • 凯末尔·奎里达欧鲁凯末尔·奎里达欧鲁(土耳其语:Kemal Kılıçdaroğlu;1948年12月17日-),是一名土耳其政治人物,现任共和人民党领袖,亦是2010年以来土耳其最主要的反对党领袖。他在2002年至2015年期
  • 为了我就是我。《为了我就是我。》(日语:僕が僕であるために。)是叶月抹茶的日本漫画作品。于《月刊GANGAN JOKER》2015年11月号开始连载,单行本全7卷。此漫画作品为漫画家叶月抹茶的第四个作
  • 数码绘图板数码绘图板(英语:Graphics tablet、Digitizer),又叫作数位板、手写板或电绘板,通常是美术创作者所使用,早期是一种使用电磁技术的电脑周边的输入装置,它的使用方式是以专用的电磁笔
  • 地质标本馆地质标本馆(日语:地質標本館/ちしつひょうほんかん)是位于日本茨城县筑波市东(日语:東 (つくば市))一丁目的地球科学博物馆,1980年起对公众开放。全馆共二层,入口大厅、第一展示室及