无限阶三角形镶嵌

✍ dations ◷ 2025-01-23 09:20:38 #镶嵌,双曲面镶嵌

在几何学中,无限阶三角形镶嵌是一种位于双曲平面仿紧空间镶嵌图形,由正三角形组成,在施莱夫利符号中用{3,∞}来表示,考克斯特-迪肯符号(英语:Coxeter-Dynkin diagram)中以CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png表示。每个顶点都是无限多个三角形的公共顶点,也因此使这个图形无法存于平面上。这个图形每一条线都可以做为整个图形的对称线。

无限阶三角形镶嵌可以视为一系列由三角形组成的多面体之几何极限,但也可以达到更高阶数,利用虚阶数表示其阶数比无穷大更多,即超无限阶三角形镶嵌,在考克斯特-迪肯符号(英语:Coxeter-Dynkin diagram)中以CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node 1.png表示。

由于无限阶三角形镶嵌全部都是由正三角形组成,每个顶点相同、边也等长,因此也是一种正几何图形。

无限阶三角形镶嵌中,无限阶指的是三角形的公共顶点的三角形个数为无限多个,由于每个顶点都是无限多个三角形的公共顶点,因此最理想的状态是每个顶点都位于庞加莱双曲盘投影的边界上,即无穷远处,否则将无法绘制出包含无限多个三角形的顶点。无限阶三角形镶嵌是三阶无限边形镶嵌的对偶镶嵌,因此每个三角形的公共顶点包含的三角形数量为可数集的数量,因此若要计算其角度总合的话将会计算出正无穷大,有时会被记为 lim n 60 n {\displaystyle \lim _{n\to \infty }60^{\circ }n} ,因为其为正三角形内角的整数倍,顶点图以 3 {\displaystyle 3^{\infty }} 3 3 3 3 {\displaystyle {\begin{matrix}\underbrace {3_{\cdot }3_{\cdot }\cdots _{\cdot }3_{\cdot }3} \\\infty \end{matrix}}} 表示每个顶点是无限多个三角形的公共顶点。

每个顶点都是无限多个三角形的公共顶点是一个抽象概念,其应视为正四面体(每个顶点都是三个三角形的公共顶点)、正八面体(每个顶点都是四个三角形的公共顶点)、正二十面体(每个顶点都是五个三角形的公共顶点)、正六边形镶嵌(每个顶点都是六个三角形的公共顶点)系列的极限,无限阶三角形镶嵌则为“顶点都是无限多个三角形的公共顶点”抽象概念被可视化的结果,因此无法于平面或一般常见的几何学讨论,只能在双曲面几何(罗氏几何)中讨论。

由于无限阶三角形镶嵌是一个位于双曲面上的形状,因此要上它显示于平面上必须使用投影,因此从不同位置投影出来的结果也不尽相同。下表列出一些不同位置投影的结果:

对称性比较低的形式就是在该图形表面交替地涂上不同颜色,如下图,以黄色及蓝色交替上色,可以利用循环表式的考克斯特符号(英语:Coxeter-Dynkin diagram){(3,∞,3)}或威佐夫符号(英语:Wythoff symbol)CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png来表示,也可以看成分别图上三种颜色的镜射线,如下图,以红色、绿色以及蓝色表示,他们代表了*∞∞∞对称群的根本域。

即使无限阶已经是最多阶数的了,但仍可以利用伪多边形群构造更高阶数的图形,即阶数使用虚数表示其所包含的三角形数量比无限大还要多。他们的对偶为三阶超无限边形镶嵌,其边数也是以iπ/λ表示,代表其边数比无限大还要多,同样属于非紧凑的双曲镶嵌,并且有无穷多种组合(整个虚数集)。

虽然是变为“超无限阶”,但其实际上是变为每个顶点都不存在了,即不相交了,所组成的三角形则变成由三条在双曲面上不将交的三条直线组成,如同无限面形中,二角形顶点因退化而不存在的情形,此三角形也是类似的情形。但由于三角形必须是由三条线段顺次首尾相连,组成的一个闭合图形,因此严格来说,那些三角形都不存在。

这些阶数为复的三角形镶嵌由于其形成了不闭合且不是有界的的空间,因此不属于紧空间。

复阶数的三角形镶嵌也构成了一个无穷系列,从i、2i一直到虚无穷。也因此无限阶三角形镶嵌也可使视为两个系列的极限。

在几何学中,无限阶三角形镶嵌跟其他几何图形中有一些关联,下面列出两种关联:同样由三角形组成与无限变形镶嵌的变换形。

无限阶三角形镶嵌在拓扑上与一系列用施莱夫利符号{3,n}表示的(广义)多面体一直延伸到双曲镶嵌拥有相似的结构:

这一系列图形全部都是正图形。在这一系列中,从n=2开始,n介于3到5是三维欧几里得空间的多面体,这些面体同时也是柏拉图立体,n为6时是欧几里得平面镶嵌图,是正镶嵌图之一,n从7开始是二维罗氏几何平面镶嵌图,即双曲镶嵌图,直至无限大的无限阶三角形镶嵌,为此系列终点。

无限阶三角形镶嵌可以透过三阶无限变形镶嵌透过对偶变换构成。其他可以经由无限边形镶嵌变换成的几何图形列于下表:


非正无限阶三角形镶嵌可以从中央三角形经过境射的迭代过程中产生,如下图所示:

相关

  • 莫西沙星莫西沙星(学名:Moxifloxacin,发音“moxi FLOX a sin”)是一种由拜尔公司开发的第四代人工合成的喹诺酮类抗细菌药(8-methoxy-fluoroquinolone类抗生素)。其口服剂(以盐酸莫西沙星之
  • γ详见细菌分类表γ‐变形菌纲(学名:Gammaproteobacteria)属于细菌界变形菌门,是目前所知的细菌中种类最多的一纲,包括一些医学上和科学研究中很重要的类群,如肠杆菌科(Enterobactera
  • 裴顿·劳斯弗朗西斯·裴顿·劳斯(英语:Francis Peyton Rous,1879年10月5日-1970年2月16日),美国生物学家,出生于马里兰州的巴尔的摩,他发现了病毒在某些癌症中所扮演的角色,因而获得1966年的诺
  • 皮茨尔瓦尼亚县皮茨尔瓦尼亚县(Pittsylvania County, Virginia)是美国维吉尼亚州南部的一个县,南邻北卡罗莱纳州。面积2,533平方公里,是该州面积最大的县。根据美国2000年人口普查,共有人口61,7
  • P-3猎户座海上巡逻机P-3“猎户座”(英语:P-3 Orion)美国洛克希德公司设计生产的一种海上巡逻机,已被世界许多国家所采用,主要用途是作为海上巡逻(英语:Maritime patrol)、侦察与反潜作战。1957年8月,美国
  • 王象斗王象斗(?年-?年),字子极,号瞻吾,山东新城县(今桓台县新城镇)人。 明朝政治人物。王象斗为王之辅三子。十岁即通诗律,工书法。万历二十三年(1595年)登乙未科进士,授户部主事。曾奉命前往江
  • 书肺书肺是一种常见于蛛形纲生物腹部内的呼吸器官。虽然有“肺”之称,但其实与脊椎动物的肺并无联系,只是因为形状相似而得名。“书”一名则来自书肺中的气袋和血淋巴形成的组织。
  • 西北角坐标:49°23′4.1″N 95°09′12.2″W / 49.384472°N 95.153389°W / 49.384472; -95.153389西北角(Northwest Angle)位处于明尼苏达州的伍兹湖县(Lake of the Woods County)北
  • 上甘岭战役联合国军:上甘岭战役是朝鲜战争后期僵持阶段的一次主要战役,为美军“摊牌行动”(Operation Showdown)的一部分。1952年夏季,美第9军计划动用美国陆军第7师,大韩民国陆军第2师及第9
  • 萨班斯-奥克斯利法案财务会计 · 管理会计 ·《萨班斯・奥克斯利法案》(英语:Sarbanes-Oxley Act),是美国国会根据安然有限公司及世界通讯公司等财务欺诈事件破产暴露出来的公司和证券监管问题所