无限阶三角形镶嵌

✍ dations ◷ 2025-08-23 13:06:41 #镶嵌,双曲面镶嵌

在几何学中,无限阶三角形镶嵌是一种位于双曲平面仿紧空间镶嵌图形,由正三角形组成,在施莱夫利符号中用{3,∞}来表示,考克斯特-迪肯符号(英语:Coxeter-Dynkin diagram)中以CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png表示。每个顶点都是无限多个三角形的公共顶点,也因此使这个图形无法存于平面上。这个图形每一条线都可以做为整个图形的对称线。

无限阶三角形镶嵌可以视为一系列由三角形组成的多面体之几何极限,但也可以达到更高阶数,利用虚阶数表示其阶数比无穷大更多,即超无限阶三角形镶嵌,在考克斯特-迪肯符号(英语:Coxeter-Dynkin diagram)中以CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node 1.png表示。

由于无限阶三角形镶嵌全部都是由正三角形组成,每个顶点相同、边也等长,因此也是一种正几何图形。

无限阶三角形镶嵌中,无限阶指的是三角形的公共顶点的三角形个数为无限多个,由于每个顶点都是无限多个三角形的公共顶点,因此最理想的状态是每个顶点都位于庞加莱双曲盘投影的边界上,即无穷远处,否则将无法绘制出包含无限多个三角形的顶点。无限阶三角形镶嵌是三阶无限边形镶嵌的对偶镶嵌,因此每个三角形的公共顶点包含的三角形数量为可数集的数量,因此若要计算其角度总合的话将会计算出正无穷大,有时会被记为 lim n 60 n {\displaystyle \lim _{n\to \infty }60^{\circ }n} ,因为其为正三角形内角的整数倍,顶点图以 3 {\displaystyle 3^{\infty }} 3 3 3 3 {\displaystyle {\begin{matrix}\underbrace {3_{\cdot }3_{\cdot }\cdots _{\cdot }3_{\cdot }3} \\\infty \end{matrix}}} 表示每个顶点是无限多个三角形的公共顶点。

每个顶点都是无限多个三角形的公共顶点是一个抽象概念,其应视为正四面体(每个顶点都是三个三角形的公共顶点)、正八面体(每个顶点都是四个三角形的公共顶点)、正二十面体(每个顶点都是五个三角形的公共顶点)、正六边形镶嵌(每个顶点都是六个三角形的公共顶点)系列的极限,无限阶三角形镶嵌则为“顶点都是无限多个三角形的公共顶点”抽象概念被可视化的结果,因此无法于平面或一般常见的几何学讨论,只能在双曲面几何(罗氏几何)中讨论。

由于无限阶三角形镶嵌是一个位于双曲面上的形状,因此要上它显示于平面上必须使用投影,因此从不同位置投影出来的结果也不尽相同。下表列出一些不同位置投影的结果:

对称性比较低的形式就是在该图形表面交替地涂上不同颜色,如下图,以黄色及蓝色交替上色,可以利用循环表式的考克斯特符号(英语:Coxeter-Dynkin diagram){(3,∞,3)}或威佐夫符号(英语:Wythoff symbol)CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png来表示,也可以看成分别图上三种颜色的镜射线,如下图,以红色、绿色以及蓝色表示,他们代表了*∞∞∞对称群的根本域。

即使无限阶已经是最多阶数的了,但仍可以利用伪多边形群构造更高阶数的图形,即阶数使用虚数表示其所包含的三角形数量比无限大还要多。他们的对偶为三阶超无限边形镶嵌,其边数也是以iπ/λ表示,代表其边数比无限大还要多,同样属于非紧凑的双曲镶嵌,并且有无穷多种组合(整个虚数集)。

虽然是变为“超无限阶”,但其实际上是变为每个顶点都不存在了,即不相交了,所组成的三角形则变成由三条在双曲面上不将交的三条直线组成,如同无限面形中,二角形顶点因退化而不存在的情形,此三角形也是类似的情形。但由于三角形必须是由三条线段顺次首尾相连,组成的一个闭合图形,因此严格来说,那些三角形都不存在。

这些阶数为复的三角形镶嵌由于其形成了不闭合且不是有界的的空间,因此不属于紧空间。

复阶数的三角形镶嵌也构成了一个无穷系列,从i、2i一直到虚无穷。也因此无限阶三角形镶嵌也可使视为两个系列的极限。

在几何学中,无限阶三角形镶嵌跟其他几何图形中有一些关联,下面列出两种关联:同样由三角形组成与无限变形镶嵌的变换形。

无限阶三角形镶嵌在拓扑上与一系列用施莱夫利符号{3,n}表示的(广义)多面体一直延伸到双曲镶嵌拥有相似的结构:

这一系列图形全部都是正图形。在这一系列中,从n=2开始,n介于3到5是三维欧几里得空间的多面体,这些面体同时也是柏拉图立体,n为6时是欧几里得平面镶嵌图,是正镶嵌图之一,n从7开始是二维罗氏几何平面镶嵌图,即双曲镶嵌图,直至无限大的无限阶三角形镶嵌,为此系列终点。

无限阶三角形镶嵌可以透过三阶无限变形镶嵌透过对偶变换构成。其他可以经由无限边形镶嵌变换成的几何图形列于下表:


非正无限阶三角形镶嵌可以从中央三角形经过境射的迭代过程中产生,如下图所示:

相关

  • ΞXi(大写Ξ,小写ξ,中文音译:克希、克西),是第十四个希腊字母。大写Ξ用于:小写ξ用于:西里尔字母的Ѯ (Ksi)是由Xi演变而成。
  • 莫加多尔剧院莫加多尔剧院(法语:Théâtre Mogador)是位于法国首都巴黎的一座剧院,成立于1913年,共有三层座位,1800个座席。在2005年,莫加多尔剧院是莫里哀戏剧奖的颁奖地点。
  • 石黄雄黄,又称作石黄、黄金石、鸡冠石,是一种含硫和砷的矿石,质软、性脆,通常为粒状、紧密状块,或者粉末,条痕呈浅桔红色。主要成分是四硫化四砷(As4S4,占90%以上)。雄黄主要产于低温热液
  • 十七省十七省是15世纪到16世纪时,哈布斯堡尼德兰帝国政治体的术语。十七省大致包含低地国,也就是目前荷兰、比利时和卢森堡;同时再加上大部分现代法国北部省,包括亚多亚、法国佛兰德斯
  • 亚美尼亚历亚美尼亚历法是亚美尼亚使用的传统历法,来自于古埃及的历法系统,是一种阳历,将一年分为12个月,每月30天,最后再加5天,不属于任何一个月,因此每年有365天,但不设置闰年,所以和公历逐渐
  • 广信广信是汉代岭南中心地,可能是梧州至封开一带,至今犹无定论。它是以汉武帝“初开粤地宜广布恩信”之“圣旨”命名,是监察岭南九郡的“交趾刺史部”所在地,以广信划分广东、广西。
  • 凯特·布什凯瑟琳·“凯特”·布什,CBE(英语:Catherine "Kate" Bush,1958年7月30日-)英国知名女歌星、作曲家、音乐家及唱片制作人;唱风富有英国古神话神秘意境(如亚瑟王圆桌武士时代),节拍清楚
  • 连二次硝酸连二次硝酸(化学式:H2N2O2),也称为连二亚硝酸、连二次亚硝酸(Hyponitrous acid),无色小片状晶体,是氮的含氧酸之一。可溶于水和乙醇。是硝酰胺(H2N-NO2)的异构体。结构写作HO-N=N-OH,有
  • 亚碘酸亚碘酸,化学式为HIO2,它非常不稳定只能在水溶液中短暂存在。至今也没有可靠报道制得了这种酸。
  • 布拉德福蛋白质定量法布拉德福蛋白质定量法(Bradford protein assay)(中文名称为“考马斯亮兰法”)为一种利用光谱学技术分析溶液中蛋白质浓度的技术。本定量法会受待测氨基酸序列影响,此方法为Marion