无限阶三角形镶嵌

✍ dations ◷ 2025-02-23 21:35:41 #镶嵌,双曲面镶嵌

在几何学中,无限阶三角形镶嵌是一种位于双曲平面仿紧空间镶嵌图形,由正三角形组成,在施莱夫利符号中用{3,∞}来表示,考克斯特-迪肯符号(英语:Coxeter-Dynkin diagram)中以CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png表示。每个顶点都是无限多个三角形的公共顶点,也因此使这个图形无法存于平面上。这个图形每一条线都可以做为整个图形的对称线。

无限阶三角形镶嵌可以视为一系列由三角形组成的多面体之几何极限,但也可以达到更高阶数,利用虚阶数表示其阶数比无穷大更多,即超无限阶三角形镶嵌,在考克斯特-迪肯符号(英语:Coxeter-Dynkin diagram)中以CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node 1.png表示。

由于无限阶三角形镶嵌全部都是由正三角形组成,每个顶点相同、边也等长,因此也是一种正几何图形。

无限阶三角形镶嵌中,无限阶指的是三角形的公共顶点的三角形个数为无限多个,由于每个顶点都是无限多个三角形的公共顶点,因此最理想的状态是每个顶点都位于庞加莱双曲盘投影的边界上,即无穷远处,否则将无法绘制出包含无限多个三角形的顶点。无限阶三角形镶嵌是三阶无限边形镶嵌的对偶镶嵌,因此每个三角形的公共顶点包含的三角形数量为可数集的数量,因此若要计算其角度总合的话将会计算出正无穷大,有时会被记为 lim n 60 n {\displaystyle \lim _{n\to \infty }60^{\circ }n} ,因为其为正三角形内角的整数倍,顶点图以 3 {\displaystyle 3^{\infty }} 3 3 3 3 {\displaystyle {\begin{matrix}\underbrace {3_{\cdot }3_{\cdot }\cdots _{\cdot }3_{\cdot }3} \\\infty \end{matrix}}} 表示每个顶点是无限多个三角形的公共顶点。

每个顶点都是无限多个三角形的公共顶点是一个抽象概念,其应视为正四面体(每个顶点都是三个三角形的公共顶点)、正八面体(每个顶点都是四个三角形的公共顶点)、正二十面体(每个顶点都是五个三角形的公共顶点)、正六边形镶嵌(每个顶点都是六个三角形的公共顶点)系列的极限,无限阶三角形镶嵌则为“顶点都是无限多个三角形的公共顶点”抽象概念被可视化的结果,因此无法于平面或一般常见的几何学讨论,只能在双曲面几何(罗氏几何)中讨论。

由于无限阶三角形镶嵌是一个位于双曲面上的形状,因此要上它显示于平面上必须使用投影,因此从不同位置投影出来的结果也不尽相同。下表列出一些不同位置投影的结果:

对称性比较低的形式就是在该图形表面交替地涂上不同颜色,如下图,以黄色及蓝色交替上色,可以利用循环表式的考克斯特符号(英语:Coxeter-Dynkin diagram){(3,∞,3)}或威佐夫符号(英语:Wythoff symbol)CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png来表示,也可以看成分别图上三种颜色的镜射线,如下图,以红色、绿色以及蓝色表示,他们代表了*∞∞∞对称群的根本域。

即使无限阶已经是最多阶数的了,但仍可以利用伪多边形群构造更高阶数的图形,即阶数使用虚数表示其所包含的三角形数量比无限大还要多。他们的对偶为三阶超无限边形镶嵌,其边数也是以iπ/λ表示,代表其边数比无限大还要多,同样属于非紧凑的双曲镶嵌,并且有无穷多种组合(整个虚数集)。

虽然是变为“超无限阶”,但其实际上是变为每个顶点都不存在了,即不相交了,所组成的三角形则变成由三条在双曲面上不将交的三条直线组成,如同无限面形中,二角形顶点因退化而不存在的情形,此三角形也是类似的情形。但由于三角形必须是由三条线段顺次首尾相连,组成的一个闭合图形,因此严格来说,那些三角形都不存在。

这些阶数为复的三角形镶嵌由于其形成了不闭合且不是有界的的空间,因此不属于紧空间。

复阶数的三角形镶嵌也构成了一个无穷系列,从i、2i一直到虚无穷。也因此无限阶三角形镶嵌也可使视为两个系列的极限。

在几何学中,无限阶三角形镶嵌跟其他几何图形中有一些关联,下面列出两种关联:同样由三角形组成与无限变形镶嵌的变换形。

无限阶三角形镶嵌在拓扑上与一系列用施莱夫利符号{3,n}表示的(广义)多面体一直延伸到双曲镶嵌拥有相似的结构:

这一系列图形全部都是正图形。在这一系列中,从n=2开始,n介于3到5是三维欧几里得空间的多面体,这些面体同时也是柏拉图立体,n为6时是欧几里得平面镶嵌图,是正镶嵌图之一,n从7开始是二维罗氏几何平面镶嵌图,即双曲镶嵌图,直至无限大的无限阶三角形镶嵌,为此系列终点。

无限阶三角形镶嵌可以透过三阶无限变形镶嵌透过对偶变换构成。其他可以经由无限边形镶嵌变换成的几何图形列于下表:


非正无限阶三角形镶嵌可以从中央三角形经过境射的迭代过程中产生,如下图所示:

相关

  • 自然界的艺术形式《自然界的艺术形态》(德语:Kunstformen der Natur)是由德国医生、比较解剖学、生物学家恩斯特·海克尔所出版的平板印刷插画图鉴。海克尔的生物插画最早从1899年开始以十张的
  • MgCsub14/subHsub10/subOsub4/sub苯甲酸镁是由镁和苯甲酸形成的化合物,化学式为Mg(C6H5COO)2,存在无水物、二水合物和四水合物,其四水合物于90 °C开始失水。它可由氧化镁和苯甲酸反应制得。它曾被用于治疗痛风
  • 大红灯笼高高挂《大红灯笼高高挂》(Raise The Red Lantern)是1991年出品的一部中国电影,由张艺谋导演,巩俐主演。电影剧本是由倪震根据1990年苏童的小说《妻妾成群》改编而成。这部电影获得第
  • 呼吸道上皮细胞伪复层纤毛柱状上皮属于另一种单层柱状上皮的变异,细胞皆具有纤毛,又可以称为假复层纤毛柱状上皮。之所以称做伪复层是因为其在切片下看起来细胞好像多于一层所造成的错误观念
  • 太阳极大期太阳极大期是在正常约11年的太阳周期中活动最活耀的时期。当太阳极大期时,会出现大量的太阳黑子,并且太阳的辐射会增加大约0.07% 。增强的太阳能量输出可能会影响一些地区的气
  • 井户敏三井户敏三(日语:井戸 敏三/いど としぞう Ido Toshizō,1945年8月10日-)日本自治・总务官僚、政治人物。现任兵库县知事(5期),曾担任兵库县副知事(1996年 - 2001年)。2013年兵库县知事
  • 提督提督,俗称“军门”。中国历史上的武官差遣,为从一品官,就品级而言,受总督或巡抚节制。总督与巡抚掌军政,总兵官与提督则掌军令;一个是行政统治行为,一个则是统帅权力,没有一定的上下
  • 卢人语卢人语是贵州省的一种绝迹的汉藏语。卢人语可能于20世纪60年代灭绝。卢人语同蔡家话和龙家语有极近的亲缘关系。然而,这三种语言在汉藏语系中的具体分类仍不确定。郑张尚芳(20
  • 航空母舰战斗群航空母舰战斗群(英语:carrier battle group,缩写为CVBG、CVSG或CARBATGRU)是一支以航空母舰为首的作战舰队。这种舰队绝大部分由美国海军所拥有,是美国力量投射能力的重要部分。
  • 中原城市群城际轨道交通中原城市群城际轨道交通是中国大陆河南省一个已部分投入运营并正在逐步完善的城际轨道交通系统。该系统涉及到郑州、洛阳、开封、新乡、焦作、许昌、平顶山、漯河、济源等九