首页 >
感觉器
✍ dations ◷ 2024-11-05 19:25:13 #感觉器
感觉系统(英语:sensory system)是神经系统中处理感觉信息的一部分。感觉系统包括感受器、神经通路以及大脑中和感觉知觉有关的部分。通常而言感觉系统包括那些和视觉、听觉、触觉、味觉以及嗅觉相关的系统。简单而言,感觉系统是物理世界与内在感受之间的变换器,人类或是动物以此产生对外在世界的知觉。感受野对应特定的感觉细胞或感觉器官,是指外在世界上可产生刺激,使感觉细胞或器官可以感知的部分。例如眼睛可见之处,就是眼睛的感受野,而视杆细胞或视锥细胞可以感受到的光,是这些细胞的感受野。感受野会因为对应视觉系统、听觉系统、体感系统等,而有不同的感受野。感觉系统会接收到刺激的四个层面:种类、强度、位置及持续时间。连续声音到达的时间及两耳接收到的相位会用来识别音源的位置。特定的接受器会对特定的刺激格外敏感(例如不同的机械感受器会对不同的刺激有反应,例如尖锐或钝的物体)。接受器动作电位会以特定方式变化,表示刺激源的强度(例如声音有多大)。接受器的位置可以提供大脑有关刺激来源的资讯(例如手指的机械感受器也会让大脑知道是哪一只手指摸到东西)。刺激持续的时间可以由接受器讯号持续的时间来表示。这些脉冲透过传入神经传到大脑。因为感觉定义的不同,神经学家对于感觉的种类及个数仍有争议。不过释迦牟尼及亚里士多德都有定义五种人会有的感觉:触觉、味觉、嗅觉、视觉及听觉。其他人类及大部分哺乳类会有的感觉有痛觉、平衡感(英语:Sense of balance)、本体感觉及温觉(英语:thermoception)。有些人类以外的动物还有一些其他的感觉,例如磁感觉(英语:magnetoception)及电感觉(英语:electroreception)。化学感受器(英语:Chemoreceptor)(chemoreceptor)会侦测特定的化学刺激,将信号转换为动作电位。化学感受器主要有两种:光感受器(photoreceptor)可以进行光电转换(英语:phototransduction),也就是将光(电磁波)借由其他形式的能量,转换为膜电位。光感受器主要可以分为三种:机械感受器(mechanoreceptor)是可以感受受力(例如压强及扭动)的感受器。有些机械感受器存在毛细胞中,在前庭系统及听觉系统中有重要的功用。主要机械感受器是在皮肤,可以分为四种:温度感受器(英语:Thermoreceptor)(thermoreceptor)是感知温度变化的感受器。有关其感知的机制仍不明确,不过有研究发现哺乳类至少有两种温度感受器:伤害感受器(英语:Nociceptor)(nociceptor)会在受到可能会有伤害的潜在刺激时,送讯号到脊髓和脑。这个程序称为伤害感受(英语:nociception),多半会造成疼痛的感受。在内脏及体表都有这种感受器。伤害感受器会感知不同种类的伤害性刺激或是实际伤害。有些伤害感受器只在组织受损时才会反应,称为“休眠”或“沉默”伤害感受器。上述受体接收到的刺激会转换为动作电位,透过一个或是多个传入神经纤维传到大脑的特定部位。感觉皮层(英语:sensory cortex)一词常常用来指体感皮层(英语:somatosensory cortex),不过更准确的定义是指大脑中处理感官讯号的多个部位。针对人类传统的五感而言,包括了初级及次级的感觉皮层:体感皮层、视觉皮层、听觉皮层、原嗅皮层(英语:primary olfactory cortex)及味觉皮层(英语:gustatory cortex)。其他的刺激模式(英语:stimulus modality)也有对应的感觉皮层,包括维持平衡感的前庭皮质(英语:vestibular cortex)。体感皮层(英语:somatosensory cortex)位在大脑的顶叶,是体感系统中处理触觉及本体感觉的主要接受区。体感皮层可以再细分为布罗德曼分区系统 1, 2和3。目前认为布罗德曼3区(英语:Brodmann area 3)是主要的讯息处理中心,接收到大部分丘脑的输入、具有对体感刺激有明显反应的神经元、而且可以借由刺激产生的电子讯息产生本体感觉。1区及2区接受大部分1区及2区的讯号。脑部也有本体感觉(借由小脑)及运动神经(英语:motor neuron)控制(透过布罗德曼4区(英语:Brodmann area 4))的路径。可参考S2(次级体感皮层(英语:Secondary somatosensory cortex))。视觉皮层包括称为V1或布罗德曼17区的初级视觉皮层,以及纹外视觉皮层V2-V5。初级视觉皮层位在枕叶,是视觉输入的初级中继站,依照双流假说,初级视觉皮层会借着二个主要路径传送资讯,分别是背侧流(dorsal stream)及腹侧流(ventral stream)。背侧流路径包括皮层V2及V5,用来处理视觉上有关“哪里”及“如何”的资讯,而腹侧流的路径包括皮层V3及V4,用来处理视觉上有关“什么”的资讯。在一些情下,腹侧流注意力网络(ventral attention network)中任务负激活(英语:Task-negative)区域的活动会增加,例如感觉刺激的突然变化、任务阶段的开始及结束、以及在一个完整测试结束的时候。听觉皮层位在颞叶,是声音资讯的初级接收区。听觉皮层是由布罗德曼41及42区组成,也称为前横向颞41区(anterior transverse temporal area 41)及后横向颞42区(posterior transverse temporal area 42)。二个区域的行为类似,都是接收及处理毛细胞传递的资讯。原嗅皮层(英语:primary olfactory cortex)位在颞叶,是嗅觉的主要接收区。哺乳类的嗅觉和味觉的机制是由周围神经系统及中枢神经系统整合达成的。周围神经的机制包括嗅接收神经元(英语:olfactory receptor neurons)延著嗅神经传递化学讯号,最后到达嗅球。参与嗅神经级联的化学受体利用G蛋白质受体来传递其化学信号到级联较下级的神经。中枢神经的机制包括将嗅神经轴突整合到嗅球中的嗅小体(英语:glomerulus),信号再传送到原嗅皮层,其中包括前嗅核(英语:anterior olfactory nucleus)、梨状皮质(英语:piriform cortex)、内侧杏仁核及内嗅皮质(英语:entorhinal cortex)。视觉及听觉会跨脑半球整合讯息,但嗅球不会,右嗅球连接到脑右半球,而左嗅球连接到脑左半球。味觉皮层(英语:gustatory cortex)是味觉的主要接收区。以技术的角度来看,味道(taste)是指品尝食物时,舌头上味蕾的感觉。味蕾可以感受到的五种味觉有酸、苦、甜、咸,以及一种对蛋白质的感觉,称为鲜味(辣是化学物质刺激细胞产生的感觉,严格来说不属于味觉)。有关食物的另外一个词是flavor,是指味觉、嗅觉及舌头触觉整合后得到的体验。味觉皮层包括二个部分:位在岛叶的前脑岛(anterior insula),以及位在额叶的operculum(英语:operculum (brain))。味觉和嗅觉类似,机制都是由周围神经及中枢神经整合而成。周围神经的味觉感受器位在舌、软颚、咽及食道,将接收到的讯号传送到初级感觉轴突,再传送到延髓内的孤束核,或是solitary tract complex中的味觉核。信号之后会传送到丘脑,再传送到新皮质的几个区域,其中包括味觉皮层。味觉的神经处理在每一个阶段都会受到舌头同时产生的体感资讯所影响,这个称为口感。但食物的气味会在岛叶及前额脑区底部时才会和味道的信息整合,而有更整体的感受。视觉系统是神经系统的一个组成部分,它使人类具有了视知觉能力。
它使用可见光信息构筑机体对周围世界的感知。视觉系统具有将外部世界的二维投射重构为三维世界的能力。除了人类外,不同物种也有视觉系统,所能感知的可见光处于光谱中的不同位置。例如,有些物种可以看到紫外部分,而另一些则可以看到红外部分。听觉系统是听觉的感觉系统,听觉指的是声源振动引起空气产生疏密波(声波),通过外耳和中耳组成的传音系统传递到内耳,经内耳的环能作用将声波的机械能转变为听觉神经上的神经冲动,后者传送到大脑皮层听觉中枢而产生的主观感觉。声波是由于四周的空气压力有节奏的变化而产生,当物件在震动时,四周的空气也会被影响.当物件越近,空气的粒子会被压缩;当物件越远,空气的粒子会被拉开。体感系统是有触觉、压觉、温觉(英语:thermoception)、痛觉和本体感觉(关于肌肉和关节位置和运动、躯体姿势和运动以及面部表情的感觉)的一个系统。体感是和特殊感觉相对的一个概念。这些不同的体感模式源自不同类型的感受器。在哺乳类,体感的上行神经通路起源自身体不同部位的感受器,途经后柱-内侧丘系通路(英语:Posterior column–medial lemniscus pathway)、脊髓丘脑前束(英语:Anterior spinothalamic tract)、脊髓皮层前束和脊髓皮质后束,终于大脑皮层后中央回的体感皮层(英语:somatosensory cortex)。味觉系统是指感受味觉的感受器。对于哺乳类动物,其味觉系统是由口腔内的舌头以及连接舌头及大脑之间的神经系统组成。味觉系统的作用,主要是作为一个防卫机制,减少进食有问题的食物的机会。嗅觉系统是指感受嗅觉的感受器。大部分哺乳类及爬虫类动物的嗅觉系统由主要嗅觉系统(main olfactory system)及辅助嗅觉系统(accessory olfactory system)组成,前者负责感应气态物质的气味,后者则负责感应液态物质的气味。听觉系统/听觉
相关
- 医生人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学医生又称医师,在中国古代称大夫或郎中
- 库尔特·勒温库尔特·勒温(Kurt Zadek Lewin,1890年9月9日-1947年2月12日)是一位德裔美国心理学家,他是现代社会心理学、组织心理学和应用心理学的创始人,常被称为“社会心理学之父”,最早研究
- 透翅目透翅目(Diaphanopterodea或Paramegasecoptera)是古生代中等至大型已灭绝的一目昆虫,包括一些早期的飞行昆虫。它们是古网翅总目下的一类专化昆虫,翅膀像新翅下纲般演化出可以折
- 拉斯·昂萨格拉斯·昂萨格(挪威语:Lars Onsager,1903年11月27日-1976年10月5日),挪威出生的美国化学家。他因发现非平衡态热力学的一般关系,提出了倒易关系而获得1968年诺贝尔化学奖。拉斯·昂
- 阿兰·德龙阿兰·德龙(法语:Alain Delon,1935年11月8日-),出生于法国上塞纳省,1999年取得瑞士国籍,他是六、七零年代最受欢迎的法国演员,迄今依旧是美男子的代名词。阿兰·德龙的父母在他刚出生
- 分支过程在概率论中,分支过程(英语:Branching Process)属于随机过程的一类,由一系列随机变量组成。分支过程的最初目的是建立一个数学模型,研究第n代个体产生随机个后代时的个体数模型。最
- 南卡南卡罗来纳大学(University of South Carolina)位于南卡罗来纳州,创立于1801年,是美国历史最悠久的公立大学之一。南卡罗来纳大学(南卡大学)被美国新闻与世界报道在2008年誉为在美
- NaNsub3/sub叠氮化钠,分子式NaN3,无色六角形晶体,易溶于水和液氨。微溶于乙醇,不溶于乙醚。常温下稳定,高温分解。在撞击下爆炸性分解:理论上每克叠氮化钠分解可以产生554毫升的氮气。用氨基
- 弥陀区弥陀区(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Mî-t
- 富邦银行台北富邦商业银行,简称台北富邦银行、北富银,为台湾的大型商业银行之一,隶属于富邦金控旗下,2005年1月1日由台北银行及富邦商业银行合并而成。国内营业据点共有127间,海外营业据