温度系数(temperature coefficient)是指在温度变化1K时,特定物理量的相对变化。
以下的公式中,为特定的物理量,为量测物理量时的温度,0为参考温度,Δ为量测温度及参考温度的温度差,α为(线性)温度系数。则物理量可以用以下公式表示:
此处α的量纲为温度的倒数(1/K或K−1)。
以上式子的物理量和温度成线性关系,若物理量和温度的多项式或对数成正比,也可以在一定温度范围内计算温度系数,近似此范围内的物理量变化。若物理量是随温度指数增长或指数衰减(例如阿伦尼乌斯方程),只能在一个很小的温度范围内计算温度系数。
温度系数会随应用领域的不同而不同,例如核能、电子学或磁学均有其温度系数。物体的弹性模量也会随温度而变化,一般弹性模量会随温度升高而下降。
负温度系数(NTC)是指一物体在一定温度范围内,其物理性质(例如电阻)随温度昇高而降低。半导体、绝缘体的电阻值都随温度上升而下降。
热导率为负温度系数的材料自1961年起,常用在地板暖气(英语:Underfloor heating)中。负温度系数可以避免对地毯、豆豆椅、床垫的部分过度加热,部分过度加热可能会破坏木质地板,甚至会产生火灾。
半导体和陶瓷的电阻为负温度系数。
在设计电子元件及电路时需考虑温度对电阻和元件的影响。导体的电阻率对温度大致为线性变化,可以近似为下式:
其中
= 0 °C)下的电阻率
不过半导体的电阻率对温度就是指数变化:
其中及则是决定其函数和特定温度下电阻率数值的系数。
而导体而言,即为其电阻温度系数。半导体的电阻温度系数则不太一致,有些文献将上述的为半导体的电阻温度系数。但描述半导体的电阻温度特性时,常会整理上式,使为常数e,以那时的来描述半导体的电阻温度特性。
上述性质常用在热敏电阻中。
电阻的正温度系数(PTC)是指材料的电阻值会随温度上升而上升,若一物质的电阻温度特性可作为工程应用,一般需要其阻值随温度有较大的变化,也就是温度系数较大。温度系数越大,代表在相同温度变化下,其电阻增加的越多。
大部分陶瓷的电阻为负温度系数,其统御方程为阿伦尼乌斯方程
其中为电阻,和为常数,而为绝对温度(K)。
常数和形成及移动载流子所需的能量有关,因此若B降的越低,材料越接近绝缘体。NTC电阻的目的就是选择适当的系数B,可以对温度有良好的灵敏度。利用常数可以建立以下电阻和温度的关系:
其中为温度。可由上式看出是核反应度对温度的偏微分,也就是核反应度的温度系数。表示温度变化对核反应度的影响,可应用在被动式核能安全(英语:passive nuclear safety)。负的常被视为是核能安全的重要指标,不过由于实际反应器的大幅度温度变化(和理论上的均质反应器不同),限制了以此单一数值作为核能安全指标的可行性 。
在以水为中子减速剂的核反应器,总体核反应度对温度的变化会以核反应性对水温度的变化来表示,不过反应器中的不同材质(如燃料或包复层)均有个自的核反应度温度系数。水会随着温度升高而膨胀,因此中子在中子减速剂中运动的时间会变长,燃料的体积变化相对较小。燃料温度变化造成的核反应度影响,会形成一种称为多普勒展宽的现象,是指填充材料中的快中子吸收共振,避免中子被热化减速的现象。