六角六片三角孔扭歪无限面体

✍ dations ◷ 2025-11-03 07:29:29 #正扭歪无限面体

在几何学中,六角六片三角孔扭歪无限面体(日语:六角六片三角孔ねじれ正多面体)是一种由正六边形组成的正扭歪无限面体,具有正三角形的孔洞,由考克斯特和皮特里于1926年时发现,并命名为多四面体(英语:Mutetrahedron),在施莱夫利符号中计为{6,6|3}。

六角六片三角孔扭歪无限面体是一个自身对偶多面体,换句话说即此多面体的对偶多面体为自己本身,即六角六片三角孔扭歪无限面体。在结构上,六角六片三角孔扭歪无限面体可以看做是由正四面体与截角四面体的空间填充的形状——过截角交错立方体堆砌(英语:Quarter cubic honeycomb)中移除所有正三角形面、只保留正六边形面的后所形成的扭歪无限面体。

六角六片三角孔扭歪无限面体由无限个正六边形组成,每个顶点都是6个正六边形的公共顶点,在顶点图中为一个扭歪六边形,此扭歪六边形可以视为正八面体的皮特里多边形(英语:Petrie_polygon),为下图中的黑线部分。

而在所有三个正扭歪无限面体中,四角六片四角孔扭歪无限面体的顶点图也是扭歪六边形,且同样为正八面体的皮特里多边形(英语:Petrie_polygon),但是他们有些不同,如下图所示,六角六片三角孔扭歪无限面体的顶点图为左图的绿色实线;四角六片四角孔扭歪无限面体为右图的黄色实线,线上的数字表示该棱所位在的多边形面之边数。

他们的差别在于来自不同的多边形面,六角六片三角孔扭歪无限面体顶点图的扭歪六边形,其来源正八面体的棱有的来自正三角形面、有的来自正六边形面;而四角六片四角孔扭歪无限面体的顶点图,其来源正八面体的棱全部来自正方形面,造成的结果是,当两者边长相等时,其所对应顶点图的边长会不相等。

六角六片三角孔扭歪无限面体由无限个正六边形组成,并且在中间形成正三角形的孔洞,在施莱夫利符号中计为{6,6|3},第一个6表示其由正方形构成,第二个6表示每个顶点都是6个正六边形的公共顶点,横线后面的3表示几何体中间有正三角形的孔洞。

六角六片三角孔扭歪无限面体出现于部分的流行文化创作中,例如作曲家きくお(日语:きくお)在其使用初音未来演唱的专辑《きくおミク5》中的歌曲《六角六片三角孔ねじれ正多面体ですか?》是一个以六角六片三角孔扭歪无限面体为主题的创作。

六角六片三角孔扭歪无限面体是三种正扭歪无限面体之一,另外两种为:

六角六片三角孔扭歪无限面体在拓朴中相当于六阶六边形镶嵌(施莱夫利符号:{6,6})的商空间,即六角六片三角孔扭歪无限面体可透过拓朴变形成六阶六边形镶嵌。

有些扭歪无限面体的顶点同样为6个正六边形的公共顶点,例如六角六片四角孔扭歪无限面体。

在几何学中,六角六片四角孔扭歪无限面体(日语:六角六片四角孔ねじれ正多面体)是一种位于双曲紧凑空间的正扭歪无限面体。其在施莱夫利符号中计为{6,6|4},表示每个顶点都是6个正六边形的公共顶点,并且具有正方形的孔洞。

六角六片四角孔扭歪无限面体于1967年时由C. W. L. Garner发现,可看作是由循环截角八面体-立方体堆砌(Cyclotruncated octahedral-cubic honeycomb)移除所有正方形面来构造。

六角六片五角孔扭歪无限面体并不是一个自身对偶多面体,其对偶多面体为八角八片三角孔扭歪无限面体,在施莱夫利符号中用{8,8|3}表示,与其相同顶点布局的堆砌体为循环截角立方体-八面体堆砌(Cyclotruncated cubic-octahedral honeycomb)。

在几何学中,六角六片五角孔扭歪无限面体(日语:六角六片五角孔ねじれ正多面体)是一种位于双曲紧凑空间的正扭歪无限面体。其在施莱夫利符号中计为{6,6|5},表示每个顶点都是6个正六边形的公共顶点,并且具有正五边形的孔洞。

六角六片四角孔扭歪无限面体于1967年时由C. W. L. Garner发现,可看作是由循环截角二十面体-十二面体堆砌(Cyclotruncated icosahedral-dodecahedral honeycomb)移除所有正五边形面来构造。

六角六片五角孔扭歪无限面体的对偶多面体为十角十片三角孔扭歪无限面体,在施莱夫利符号中用{10,10|3}表示,与其相同顶点布局的堆砌体为循环截角十二面体-二十面体堆砌(Cyclotruncated dodecahedral-icosahedral honeycomb)。

在几何学中,六角六片六角孔扭歪无限面体(日语:六角六片六角孔ねじれ正多面体)是一种位于双曲仿紧空间的正扭歪无限面体,其不仅所有面都是正六边形,连其孔洞也为正六边形。其在施莱夫利符号中计为{6,6|6},表示每个顶点都是6个正六边形的公共顶点,并且具有正六边形的孔洞。

相关

  • 有孔虫门见内文有孔虫门(学名:Foraminifera),为变形虫状原生生物的大分类。它们拥有的网状假足及幼细线状细胞质会分散及融合而形成动态的网,它们会形成有一个或多个室的外壳,部分在结构上
  • Bk5f9 7s22, 8, 18, 32, 27, 8, 2主条目:锫的同位素锫(台湾称鉳;英语:Berkelium)是一种放射性化学元素,符号为Bk,原子序为97,属于锕系元素和超铀元素。位于美国加州伯克利的劳伦斯伯克
  • 肌腱退化肌腱病变(英语:Tendinopathy),又称肌腱炎(英语:Tendinitis)或肌腱退化(英语:Tendinosis),是一种肌腱的疾患,可造成疼痛、局部肿胀、与功能障碍。典型的疼痛会随着肢体动作而变得明显。好
  • 自由基聚合反应自由基聚合反应是利用连续加成自由基的一种聚合方法所形成的聚合物形式。自由基可以透过一些涉及不同引发剂分子的机制形成。根据这个形成,将基态自由基(非原子团)加上单体单
  • 旗津风车公园旗津风车公园是高雄市也是全台湾第一座观光、休闲兼环保的风力发电休闲公园。在旗津风车公园内,七座风车每日可藉风力发电,而整座公园照明设备负载容量一个小时仅花费约一万八
  • 奥林匹克景气奥林匹克景气(日语:オリンピック景気)是指日本1962年11月至1964年10月由于夏季奥运会的举办而带来的经济高速发展。1964年夏季奥林匹克运动会在东京举办。奥运会使日本大大加快
  • 纽芬兰英语纽芬兰英语(英文:Newfoundland English)是主要在加拿大纽芬兰与拉布拉多省使用的几种英语口音,和加拿大其它地区的英语有很大不同。部分口音与英格兰西部的口音接近,尤其是布里斯
  • 押沙龙,押沙龙!《押沙龙,押沙龙!》(英语:Absalom, Absalom!)是威廉·福克纳所著的一部南方哥特小说,于1936年10月底面世。该作本是1934年的《黑屋》的一部分,但那部小说没有完成,《押沙龙》发展成
  • 高棉人高棉人(高棉语:ខ្មែរ)是柬埔寨的主要民族,占柬埔寨1480万人口的80%左右。一些高棉人生活在相邻的泰国和越南。高棉人是越南54个民族之一,人口1055174人(1999年统计),该民族也分
  • 决策论决策论是一个交叉学科,和数学、统计、经济学、哲学、管理和心理学相关。它主要研究实际决策者如何进行决策,以及如何达到最优决策。决策论和博弈论关系密切;二者的区别是,决策论