中子电偶极矩

✍ dations ◷ 2025-07-13 15:37:03 #物理学中未解决的问题,电磁学,粒子物理学,中子

中子电偶极矩衡量中子内部正电荷与负电荷的分布。只有当正电量心与负电量心不重叠在同一位置时,电偶极矩才不等于零。至今为止,科学家尚未发现中子电偶极矩的蛛丝马迹。现在中子电偶极矩的最准确上限为 | p n | < 2.9 × 10 26   e   c m   ( 90 % C . L . ) {\displaystyle |p_{n}|<2.9\times 10^{-26}\ e\ \mathrm {cm} \ (90\%C.L.)}

假设基本粒子拥有内禀电偶极矩,则宇称对称性和时间对称性(time symmetry)都会被破坏。举例而言,思考中子的磁偶极矩和假定的电偶极矩,这两种矢量的方向必需相同。但是,时间反演(T)会逆反磁偶极矩的方向,不会改变电偶极矩的方向;空间反演(宇称)会逆反电偶极矩的方向,不会改变磁偶极矩的方向。电偶极矩的存在破坏了这些对称性。假定CPT对称性(CPT symmetry)正确无误,则时间破坏也促使CP对称性被破坏。

按照前面论述,为了营造有限值电偶极矩,必需先存在有破坏CP对称性的理论程序。实验者已经在弱相互作用的实验中观测到CP破坏,也已经能够用标准模型的卡比博-小林-益川矩阵中的CP破坏相位来解释CP破坏。但是,这解释所获得的CP破坏数值非常微小,因此对于电偶极矩的贡献也微乎其微: | p n | 10 32   e   c m {\displaystyle |p_{n}|\sim 10^{-32}\ e\ \mathrm {cm} } 。远远低于现在最精密实验所能测量到的数值。电偶极矩实验可以用来核对很多从标准模型延伸的崭新理论,例如如最小超对称标准模型(minimal supersymmetric standard model)、左右对称模型(left-right symmetric model)等等。这些理论估计的电偶极矩数值在可核对值域内。

从宇宙的物质与反物质不对称现象,科学家觉得在大爆炸的初期,可能会有某种涉及CP破坏的机制,湮灭了大部分的反物质。安德烈·萨哈罗夫对于这过程做了很缜密的分析。科学家怀疑CP破坏的涉及程度很大,这意味着或许标准模形给出的电偶极矩过低,可能需要加以延伸。假若,测量到的电偶极矩数值能够比标准模型预测值高很多,则这怀疑的正确性就可以得到合理解释。

由于中子是由三个夸克组成的,中子会遭受到源于强相互作用的CP破坏。量子色动力学──描述强作用力的学术领域──自然地含有一个摧毁CP对称性的项目。这项目的强度是以角 θ {\displaystyle \theta } 表达。现在的中子电偶极矩极限值要求 θ < 10 10 r a d {\displaystyle \theta <10^{-10}\mathrm {rad} } 。但是,科学家认为 θ {\displaystyle \theta } 的数量级应该是1;这关于角 θ {\displaystyle \theta } 的精细调整(fine-tuning),称为“强CP问题”。

标准模型的超对称延伸,例如最小超对称标准模型(minimal supersymmetric standard model),通常会导致出很大的CP破坏。这理论对于中子电偶极矩的典型预测值域大约在 10 25   e   c m {\displaystyle 10^{-25}\ e\ \mathrm {cm} } 10 28   e   c m {\displaystyle 10^{-28}\ e\ \mathrm {cm} } 之间。如同强相互作用案例,中子电偶极矩的上限已经在局限著CP破坏相位;但是,需要实施的精细调整还不很严峻。

应用拉姆齐磁共振技术,将互相平行与反平行的磁场与电场施加于中子,然后测量其自旋的拉莫尔进动频率。这是萃取中子电偶极矩的一种优良实验方法。两种案例的进动频率分别为: h ν = 2 μ n B ± 2 d n E {\displaystyle h\nu =2\mu _{n}B\pm 2d_{n}E}

其中, h {\displaystyle h} 是普朗克常数, ν {\displaystyle \nu } 是进动频率, μ n {\displaystyle \mu _{n}} 是中子磁偶极矩, B {\displaystyle B} 是磁场, d n {\displaystyle d_{n}} 是中子电偶极矩, E {\displaystyle E} 是电场。

磁偶极矩环绕磁场的进动与电偶极矩环绕电场的进动,这两种进动造成了频率的增加或减少。从这两种频率的差值,可以立刻得到对于中子电偶极矩的衡量: p n = h Δ ν 4 E {\displaystyle p_{n}={\frac {h\Delta \nu }{4E}}}

这实验遭遇到的最大挑战(同时是最大的系统性伪效应),在做测量时,磁场必需维持稳定不变。

最早寻找中子电偶极矩的实验是使用热中子束(后来改为冷中子束)做测量。于1957年,J. H. Smith、爱德华·珀塞尔和诺曼·拉姆齐共同发表论文,宣告完成中子电偶极矩实验,获得上限为 | p n | < 5 × 10 20   e   c m {\displaystyle |p_{n}|<5\times 10^{-20}\ e\ \mathrm {cm} } 。一直到1977年,中子电偶极矩实验都是使用中子束。随着中子束的中子速度增加,一些相关的系统性效应变得无法克服,使用这方法获得的最后上限为 | p n | < 3 × 10 24   e   c m {\displaystyle |p_{n}|<3\times 10^{-24}\ e\ \mathrm {cm} }

之后,中子电偶极矩实验改使用储存于冷阱内的超冷中子(ultracold neutron)。于1980年,列宁格勒核子物理研究院(Leningrad Nuclear Physics Institute)获得上限为 | p n | < 1.6 × 10 24   e   c m   ( C . L 90 % ) {\displaystyle |p_{n}|<1.6\times 10^{-24}\ e\ \mathrm {cm} \ (C.L90\%)} 。使用水银原子磁强计(atomic mercury magnetometer)补偿磁场,劳厄-朗之万研究院(Institut Laue-Langevin)的研究团队,于2006年,获得上限 | p n | < 2.9 × 10 26   e   c m   ( 90 % C . L . ) {\displaystyle |p_{n}|<2.9\times 10^{-26}\ e\ \mathrm {cm} \ (90\%C.L.)} 。这是至今为止最佳的结果。

现在,至少有四组实验团队致力于测量中子电偶极矩,目标是在十年内将灵敏度改进至 10 28   e   c m {\displaystyle 10^{-28}\ e\ \mathrm {cm} } 。这样,可以涵盖标准模型超对称延伸的预测值域。

相关

  • 苏丹三号苏丹三号(Sudan III)是一种脂肪偶氮染色剂,常用于冻结切片的甘油三酯的染色。正常状况下是红褐色结晶。苏丹一号、三号和四号被国际癌症研究机构认定为3级致癌物质。其他名称还
  • 氨甲环酸传明酸(tranexamic acid (TXA) 或 transamin,又称氨甲环酸)是一种人工合成的氨基酸,其他名称有断血炎、止血环酸、凝血酸等,具有止血抗炎的药理效果,本作为凝血剂用途,有针剂跟口服
  • 王淀佐王淀佐(1934年3月23日-),中国矿物工程学家。生于辽宁凌海。1961年毕业于中南矿冶学院选矿系。1994年选聘为中国工程院院士。北京有色金属研究总院教授、名誉院长,中国工程院副院
  • 我们活在当下《我们活在当下》(日语:僕らは今のなかで  ?),又译作《如今的我们》,是μ's的单曲,2013年1月23日由Lantis发行,同时也是电视动画《LoveLive!》第一期的片头曲。本曲为电视动画《L
  • MURMURSHOW《MURMURSHOW》是由利得汇和沈志方组成的二人组合慢慢说乐团的首张全创作专辑,于2014年4月16日推出。由利得汇和沈志方组成的二人组合于2014年春、发行首张全创作专辑“MURMU
  • 萨马德·巴赫拉米萨马德·尼卡·巴哈拉米(波斯语:محمدصمد نیکخواه بهرامی‎,英语:Samad Nikkhah Bahrami,1983年5月11日-),出生于伊朗德黑兰,伊朗职业篮球运动员,曾效力于中国CBA
  • 叶兰舫叶兰舫(1864年-1937年),中国民国时期银行家,五四运动时期的天津商会会长,号召罢市。生于浙江金华,少年时代到天津钱庄学徒,1888年24岁独立创办“和盛益”银号。1910年与德国人冯·巴
  • 库仑积分库仑积分(英语:Coulomb integral),又称α积分,是原子轨道线性组合为分子轨道时,通过变分法求得的久期方程组包含的三类积分之一,通常用HAA和HBB表示。对于双原子分子,由于久期方程组
  • 布拉德·加雷特布拉德·加雷特(英语:Brad Garrett,1960年4月14日-)是美国男演员兼独角喜剧演员,三次获得黄金时段艾美奖。他出生在加利福尼亚,是一位犹太人,有两个哥哥。他曾就读于加州大学洛杉矶
  • 丰田喜一郎丰田喜一郎(1894年11月6日-1952年3月27日),日本企业家,丰田汽车创办人。1933年,于其父亲丰田佐吉的公司(丰田自动织机)内,成立汽车制造部门。1937年,把此汽车制造部门独立出来成立丰