恒等变换

✍ dations ◷ 2025-04-03 09:54:33 #恒等变换
在数学中,三角恒等式是对出现的所有值都为实变量,涉及到三角函数的等式。这些恒等式在表达式中有些三角函数需要简化的时候是很有用的。一个重要应用是非三角函数的积分:一个常用技巧是首先使用使用三角函数的代换规则,则通过三角恒等式可简化结果的积分。为了避免由于 sin − 1 ⁡ x {displaystyle sin ^{-1}x} 的不同意思所带来的混淆,我们经常用下列两个表格来表示三角函数的倒数和反函数。在表示余割函数时,' csc {displaystyle csc } '有时会写成比较长的' c o c s c {displaystyle mathrm {cocsc} } '。不同的角度度量适合于不同的情况。本表展示最常用的系统。弧度是缺省的角度量并用在指数函数中。所有角度度量都是无单位的。毕达哥拉斯三角恒等式如下:由上面的平方关系加上三角函数的基本定义,可以导出下面的表格,即每个三角函数都可以用其他五个表达。(严谨地说,所有根号前都应根据实际情况添加正负号)正矢、余矢、半正矢、半余矢、外正割用于航行。例如半正矢可以计算球体上的两个点之间的距离,但它们不常用。通过检视单位圆,可确立三角函数的下列性质:当三角函数反射自某个特定的 θ {displaystyle theta } 值,结果经常是另一个其他三角函数。这导致了下列恒等式:通过旋转特定角度移位三角函数,经常可以找到更简单的表达结果的不同的三角函数。例如通过旋转 π 2 {displaystyle {tfrac {pi }{2}}} 、 π {displaystyle pi } 和 2 π {displaystyle 2pi } 弧度移位函数。因为这些函数的周期要么是 π {displaystyle pi } 要么是 2 π {displaystyle 2pi } ,新函数和没有移位的旧函数完全一样。它们也叫做“和差定理”或“和差公式”。最快的证明方式是欧拉公式。x ± y = a ± b ⇒   x + y = a + b and   x − y = a − b {displaystyle {begin{aligned}xpm y=apm b&Rightarrow x+y=a+b\&{mbox{and}} x-y=a-bend{aligned}}} x ± y = a ∓ b ⇒   x + y = a − b and   x − y = a + b {displaystyle {begin{aligned}xpm y=amp b&Rightarrow x+y=a-b\&{mbox{and}} x-y=a+bend{aligned}}}这里的" | A | = k {displaystyle |A|=k} "意味着索引 A {displaystyle A} 遍历集合 { 1 , 2 , 3 , … } {displaystyle left{1,2,3,ldots right}} 的大小为 k {displaystyle k} 的所有子集的集合。在这两个恒等式中出现了在有限多项中不出现的不对称:在每个乘积中,只有有限多个正弦因子和余有限多个余弦因子。如果只有有限多项 θ i {displaystyle theta _{i}} 是非零,则在右边只有有限多项是非零,因为正弦因子将变为零,而在每个项中,所有却有限多的余弦因子将是单位一。设 x i = tan ⁡ θ i {displaystyle x_{i}=tan theta _{i}} ,对于 i = 1 , … , n {displaystyle i=1,ldots ,n} 。设 e k {displaystyle e_{k}} 是变量 x i {displaystyle x_{i}} , i = 1 , … , n {displaystyle i=1,ldots ,n} , k = 0 , … , n {displaystyle k=0,ldots ,n} 的 k {displaystyle k} 次基本对称多项式。则项的数目依赖于 n {displaystyle n} 。例如,并以此类推。一般情况可通过数学归纳法证明。(这个 x {displaystyle x} 的函数是狄利克雷核。)这些公式可以使用和差恒等式或多倍角公式来证明。(第二类切比雪夫多项式)(第一类切比雪夫多项式)参见正切半角公式,它也叫做“万能公式”。从解余弦二倍角公式的第二和第三版本得到。数学家韦达在其三角学著作《应用于三角形的数学定律》给出积化和差与和差化积恒等式。积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。sin ⁡ ( x + y ) sin ⁡ ( x − y ) = sin 2 ⁡ x − sin 2 ⁡ y = cos 2 ⁡ y − cos 2 ⁡ x {displaystyle sin(x+y)sin(x-y)=sin ^{2}{x}-sin ^{2}{y}=cos ^{2}{y}-cos ^{2}{x},}cos ⁡ ( x + y ) cos ⁡ ( x − y ) = cos 2 ⁡ x − sin 2 ⁡ y = cos 2 ⁡ y − sin 2 ⁡ x {displaystyle cos(x+y)cos(x-y)=cos ^{2}{x}-sin ^{2}{y}=cos ^{2}{y}-sin ^{2}{x},}(前三个等式是一般情况;第四个是本质。)利用三角恒等式的指数定义和双曲函数的指数定义即可求出下列恒等式:e i x = cos ⁡ x + i sin ⁡ x , e − i x = cos ⁡ x − i sin ⁡ x {displaystyle e^{ix}=cos x+i;sin x,;e^{-ix}=cos x-i;sin x}e x = cosh ⁡ x + sinh ⁡ x , e − x = cosh ⁡ x − sinh ⁡ x {displaystyle e^{x}=cosh x+sinh x!,;e^{-x}=cosh x-sinh x!}所以cosh ⁡ i x = 1 2 ( e i x + e − i x ) = cos ⁡ x {displaystyle cosh ix={tfrac {1}{2}}(e^{ix}+e^{-ix})=cos x}sinh ⁡ i x = 1 2 ( e i x − e − i x ) = i sin ⁡ x {displaystyle sinh ix={tfrac {1}{2}}(e^{ix}-e^{-ix})=isin x}下表列出部分的三角函数与双曲函数的恒等式:对于某些用途,知道同样周期但不同相位移动的正弦波的任何线性组合是有相同周期但不同相位移动的正弦波是重要的。在正弦和余弦波的线性组合的情况下,我们有这里的更一般的说,对于任何相位移动,我们有这里而为了用于特殊函数,有下列三角函数无穷乘积公式:在微积分中,下面陈述的关系要求角用弧度来度量;如果用其他方式比如角度来这些关系会变得更加复杂。如果三角函数以几何的方式来定义,它们的导数可以通过验证两个极限而找到。第一个是:可以使用单位圆和夹挤定理来验证。如果用洛必达法则来证明这个极限,那也就用这个极限证明了正弦的导数是余弦,并因此在应用洛必达法则中使用正弦的导数是余弦的事实,就是逻辑谬论中的循环论证了。第二个极限是:使用恒等式 tan ⁡ x 2 = 1 − cos ⁡ x sin ⁡ x {displaystyle tan {frac {x}{2}}=1-{frac {cos x}{sin x}}} 验证。已经确立了这两个极限,你可以使用导数的极限定义和加法定理来证明 sin ′ ⁡ x = cos ⁡ x {displaystyle sin 'x=cos x} 和 cos ′ ⁡ x = − sin ⁡ x {displaystyle cos 'x=-sin x} 。如果正弦和余弦函数用它们的泰勒级数来定义,则导数可以通过幂级数逐项微分得到。结果的三角函数可以使用上述恒等式和微分规则来做微分。在三角函数积分表中可以找到积分恒等式。三角函数(正弦和余弦)的微分是同样两个函数线性组合的事实在很多数学领域包括微分方程和傅立叶变换中是重要的基本原理。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 双态性真菌双态性真菌可存在霉菌/菌丝/丝状形式或酵母形式的真菌。一个例子就是马尔尼菲青霉菌:,在室温下,它作为一个霉菌生长,在体温下,它作为一个酵母生长。一些物种是人类和其他动物重
  • 红蟳锯缘青蟹(学名:Scylla serrata),也叫蝤蛑、蝤蝥、青蟹、黄甲蟹,是梭子蟹科青蟹属的动物。在福州和台湾,雄性、未受精的雌性、受精后的雌性锯缘青蟹又分别称为“菜蟳”、“处女蟳”
  • 曲颈龟亚目 Cryptodira 侧颈龟亚目 Pleurodira龟鳖目(学名:Testudines)是脊索动物门爬行纲的一目,现存14科共341种各类龟、鳖,它们的肋骨进化成特殊的骨制和软骨护盾,称为龟甲。龟
  • 霜冻酸奶冻酸奶是用酸奶,有时候用其他乳制品制成的冷冻甜点。它通常比冰淇淋酸,脂肪也比较少 (因为使用的是牛奶而不是奶油)。它跟牛奶冻 (近几年被称之为低脂肪或轻冰淇淋)和常见的霜淇淋
  • 士部,为汉字索引里为部首之一,康熙字典214个部首中的第三十三个(三划的则为第四个)。就繁体字部首而言,字体主体可辨认为士,且无其他部首可用者将部首归为士部。要注意的是,在繁体
  • 三裂动物三叶动物门(学名:Trilobozoa),又名三裂动物门,是一个已经完全灭绝的动物门,在分类上属辐射对称动物,身体呈特殊的三重辐射对称结构。三叶动物生存的年代非常久远,其化石仅出现于寒武
  • 喀山汗国喀山汗国(鞑靼语:Qazan xanlığı/Казан ханлыгы;俄语:Казанское ханство)是金帐汗国瓦解后产生的汗国(1441—1552年),由拔都的兄弟秃花帖木儿后人兀
  • 高雄市孔子庙高雄孔子庙可以指下列孔庙:
  • 东沙机场东沙机场(IATA代码:DSX;ICAO代码:RCLM)是一座位于中华民国所管辖的东沙群岛上的机场,主要用途为军事用途并不开放予一般民众,平日有中华民国空军的C-130运输机,以及立荣航空所提供的
  • 多发性硬化病多发性硬化症(Multiple sclerosis,MS)是一种脱髓鞘性神经病变(英语:demyelinating disease),患者脑或脊髓中的神经细胞表面的绝缘物质(即髓鞘)受到破坏,神经系统的信号转导受损,导致一