渐近线

✍ dations ◷ 2024-12-22 21:09:01 #渐近线
当任意曲线上一点 M {displaystyle M} 沿曲线无限远离原点时,如果 M {displaystyle M} 到一条直线(或另外一条曲线)的距离无限趋近于零,那么这条直线(曲线)称为这条曲线的渐近线。数学上的定义则是:若函数 y = f ( x ) {displaystyle y=fleft(xright)} 的图形收敛,则渐近线为 y = lim x → ∞ f ( x ) {displaystyle y=lim _{xto infty }fleft(xright)} 。例如,直线 y = b a x {displaystyle y={frac {b}{a}}x} 是双曲线 x 2 a 2 − y 2 b 2 = 1 {displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1} 的渐近线,因为双曲线上的点 M {displaystyle M} 到直线 y = b a x {displaystyle y={frac {b}{a}}x} 的距离 M Q < M N {displaystyle MQ<MN} ;当 M N {displaystyle MN} 无限趋近于0时, M Q {displaystyle MQ} 也无限趋近于0。所以按照定义,直线 y = b a x {displaystyle y={frac {b}{a}}x} 是该双曲线的渐近线。同理,直线 y = − b a x {displaystyle y=-{frac {b}{a}}x} 也是该双曲线的渐近线。对于 F ( x , y ) = 0 {displaystyle Fleft(x,yright)=0} 来说,如果当 x → a {displaystyle xrightarrow a} 时,有 y → ± ∞ {displaystyle yrightarrow pm infty } (左右极限不一定相等),就把 x = a {displaystyle x=a} 叫做 F ( x , y ) = 0 {displaystyle Fleft(x,yright)=0} 的垂直渐近线;如果当 x → ∞ {displaystyle xrightarrow infty } 时,有 y → b {displaystyle yrightarrow b} ,就把 y = b {displaystyle y=b} 叫做 F ( x , y ) = 0 {displaystyle Fleft(x,yright)=0} 的水平渐近线。例如, y = 3 {displaystyle y=3} 是曲线 x y = 3 x + 2 {displaystyle xy=3x+2} 的水平渐近线。求渐近线,可以依据以下结论:若极限 lim x → ∞ f ( x ) x = a {displaystyle lim _{xto infty }{frac {f(x)}{x}}=a} 存在,且极限 lim x → + ∞ [ f ( x ) − a x ] = b {displaystyle lim _{xto +infty }left=b} 也存在,那么曲线 y = f ( x ) {displaystyle y=fleft(xright)} 具有渐近线 y = a x + b {displaystyle y=ax+b} 。例:求 y = x 2 1 + x {displaystyle y={frac {x^{2}}{1+x}}} 的渐近线。解:(1) x = − 1 {displaystyle x=-1} 为其垂直渐近线。(2) lim x → ∞ f ( x ) x = lim x → ∞ x 1 + x {displaystyle lim _{xto infty }{frac {fleft(xright)}{x}}=lim _{xto infty }{frac {x}{1+x}}} ,即 a = 1 {displaystyle a=1} ;lim x → ∞ [ f ( x ) − a x ] = lim x → ∞ − x 1 + x = − 1 {displaystyle lim _{xto infty }left=lim _{xto infty }{frac {-x}{1+x}}=-1} ,即 b = − 1 {displaystyle b=-1} ;所以 y = x − 1 {displaystyle y=x-1} 也是其渐近线。

相关

  • 弗朗西斯科·维多利亚弗朗西斯科·维多利亚(Francisco de Vitoria, Francisci de Victoria,(1480年-1546年))西班牙神学家,萨拉曼卡学派始祖。
  • 戴克里先戴克里先(244年-312年,拉丁语:Gaius Aurelius Valerius Diocletianus),原名为狄奥克莱斯(Diocles),罗马帝国皇帝,于284年11月20日至305年5月1日在位。其结束罗马帝国的三世纪危机(235年
  • 脓肿脓疡(拉丁语:abscessus; 德语:Abszess; 法语:Abcès; 英语:Abscess)又称作脓疮、脓肿。指的是在身体组织中蓄积的脓。接近体表的脓疡会有红、肿、热、痛等症状,触诊病灶时感觉其内
  • 莱布尼茨戈特弗里德·威廉·莱布尼茨(德语:Gottfried Wilhelm Leibniz,德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida San
  • 赭石赭石可以指:
  • 高雄炼油厂高雄炼油厂是一间位于高雄市楠梓区半屏山麓、已停止生产的石油炼制厂,面积广达262公顷,曾有逾3,000名员工,乙烯年产量达40万公吨,为台湾中油公司过去最主要的石油炼制厂之一,主要
  • 法匹拉韦法匹拉韦(英语:Favipiravir,开发代号:T-705,也称为Avigan或favilavir)是一种抗病毒药物,由日本富山大学医学部白木公康教授与富士胶片旗下富山化学工业(今 富士胶片富山化学)共同研发
  • 卧房卧房,又称卧室、睡房及寝室,是指供人在其内睡眠、休息或进行性行为的房间。卧房不一定有床,不过通常有可供人躺卧之处。有些房子的主卧房有附属浴室,名为套房。工人房是提供予工
  • 咸鸭蛋咸鸭蛋又称腌鸭蛋、咸蛋,古称咸杬子,是一种中国传统食品,以江苏高邮所产的咸鸭蛋最为有名。古人认为鸭蛋有食疗效果。粽、月饼也会加入咸鸭蛋黄,广东月饼越多鸭蛋黄,价钱亦越贵,蛋
  • 明斯克犹太区纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部