首页 >
渐近线
✍ dations ◷ 2024-12-22 21:09:01 #渐近线
当任意曲线上一点
M
{displaystyle M}
沿曲线无限远离原点时,如果
M
{displaystyle M}
到一条直线(或另外一条曲线)的距离无限趋近于零,那么这条直线(曲线)称为这条曲线的渐近线。数学上的定义则是:若函数
y
=
f
(
x
)
{displaystyle y=fleft(xright)}
的图形收敛,则渐近线为
y
=
lim
x
→
∞
f
(
x
)
{displaystyle y=lim _{xto infty }fleft(xright)}
。例如,直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
是双曲线
x
2
a
2
−
y
2
b
2
=
1
{displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1}
的渐近线,因为双曲线上的点
M
{displaystyle M}
到直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
的距离
M
Q
<
M
N
{displaystyle MQ<MN}
;当
M
N
{displaystyle MN}
无限趋近于0时,
M
Q
{displaystyle MQ}
也无限趋近于0。所以按照定义,直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
是该双曲线的渐近线。同理,直线
y
=
−
b
a
x
{displaystyle y=-{frac {b}{a}}x}
也是该双曲线的渐近线。对于
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
来说,如果当
x
→
a
{displaystyle xrightarrow a}
时,有
y
→
±
∞
{displaystyle yrightarrow pm infty }
(左右极限不一定相等),就把
x
=
a
{displaystyle x=a}
叫做
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
的垂直渐近线;如果当
x
→
∞
{displaystyle xrightarrow infty }
时,有
y
→
b
{displaystyle yrightarrow b}
,就把
y
=
b
{displaystyle y=b}
叫做
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
的水平渐近线。例如,
y
=
3
{displaystyle y=3}
是曲线
x
y
=
3
x
+
2
{displaystyle xy=3x+2}
的水平渐近线。求渐近线,可以依据以下结论:若极限
lim
x
→
∞
f
(
x
)
x
=
a
{displaystyle lim _{xto infty }{frac {f(x)}{x}}=a}
存在,且极限
lim
x
→
+
∞
[
f
(
x
)
−
a
x
]
=
b
{displaystyle lim _{xto +infty }left=b}
也存在,那么曲线
y
=
f
(
x
)
{displaystyle y=fleft(xright)}
具有渐近线
y
=
a
x
+
b
{displaystyle y=ax+b}
。例:求
y
=
x
2
1
+
x
{displaystyle y={frac {x^{2}}{1+x}}}
的渐近线。解:(1)
x
=
−
1
{displaystyle x=-1}
为其垂直渐近线。(2)
lim
x
→
∞
f
(
x
)
x
=
lim
x
→
∞
x
1
+
x
{displaystyle lim _{xto infty }{frac {fleft(xright)}{x}}=lim _{xto infty }{frac {x}{1+x}}}
,即
a
=
1
{displaystyle a=1}
;lim
x
→
∞
[
f
(
x
)
−
a
x
]
=
lim
x
→
∞
−
x
1
+
x
=
−
1
{displaystyle lim _{xto infty }left=lim _{xto infty }{frac {-x}{1+x}}=-1}
,即
b
=
−
1
{displaystyle b=-1}
;所以
y
=
x
−
1
{displaystyle y=x-1}
也是其渐近线。
相关
- 弗朗西斯科·维多利亚弗朗西斯科·维多利亚(Francisco de Vitoria, Francisci de Victoria,(1480年-1546年))西班牙神学家,萨拉曼卡学派始祖。
- 戴克里先戴克里先(244年-312年,拉丁语:Gaius Aurelius Valerius Diocletianus),原名为狄奥克莱斯(Diocles),罗马帝国皇帝,于284年11月20日至305年5月1日在位。其结束罗马帝国的三世纪危机(235年
- 脓肿脓疡(拉丁语:abscessus; 德语:Abszess; 法语:Abcès; 英语:Abscess)又称作脓疮、脓肿。指的是在身体组织中蓄积的脓。接近体表的脓疡会有红、肿、热、痛等症状,触诊病灶时感觉其内
- 莱布尼茨戈特弗里德·威廉·莱布尼茨(德语:Gottfried Wilhelm Leibniz,德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida San
- 赭石赭石可以指:
- 高雄炼油厂高雄炼油厂是一间位于高雄市楠梓区半屏山麓、已停止生产的石油炼制厂,面积广达262公顷,曾有逾3,000名员工,乙烯年产量达40万公吨,为台湾中油公司过去最主要的石油炼制厂之一,主要
- 法匹拉韦法匹拉韦(英语:Favipiravir,开发代号:T-705,也称为Avigan或favilavir)是一种抗病毒药物,由日本富山大学医学部白木公康教授与富士胶片旗下富山化学工业(今 富士胶片富山化学)共同研发
- 卧房卧房,又称卧室、睡房及寝室,是指供人在其内睡眠、休息或进行性行为的房间。卧房不一定有床,不过通常有可供人躺卧之处。有些房子的主卧房有附属浴室,名为套房。工人房是提供予工
- 咸鸭蛋咸鸭蛋又称腌鸭蛋、咸蛋,古称咸杬子,是一种中国传统食品,以江苏高邮所产的咸鸭蛋最为有名。古人认为鸭蛋有食疗效果。粽、月饼也会加入咸鸭蛋黄,广东月饼越多鸭蛋黄,价钱亦越贵,蛋
- 明斯克犹太区纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部