首页 >
渐近线
✍ dations ◷ 2025-07-27 12:19:21 #渐近线
当任意曲线上一点
M
{displaystyle M}
沿曲线无限远离原点时,如果
M
{displaystyle M}
到一条直线(或另外一条曲线)的距离无限趋近于零,那么这条直线(曲线)称为这条曲线的渐近线。数学上的定义则是:若函数
y
=
f
(
x
)
{displaystyle y=fleft(xright)}
的图形收敛,则渐近线为
y
=
lim
x
→
∞
f
(
x
)
{displaystyle y=lim _{xto infty }fleft(xright)}
。例如,直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
是双曲线
x
2
a
2
−
y
2
b
2
=
1
{displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1}
的渐近线,因为双曲线上的点
M
{displaystyle M}
到直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
的距离
M
Q
<
M
N
{displaystyle MQ<MN}
;当
M
N
{displaystyle MN}
无限趋近于0时,
M
Q
{displaystyle MQ}
也无限趋近于0。所以按照定义,直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
是该双曲线的渐近线。同理,直线
y
=
−
b
a
x
{displaystyle y=-{frac {b}{a}}x}
也是该双曲线的渐近线。对于
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
来说,如果当
x
→
a
{displaystyle xrightarrow a}
时,有
y
→
±
∞
{displaystyle yrightarrow pm infty }
(左右极限不一定相等),就把
x
=
a
{displaystyle x=a}
叫做
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
的垂直渐近线;如果当
x
→
∞
{displaystyle xrightarrow infty }
时,有
y
→
b
{displaystyle yrightarrow b}
,就把
y
=
b
{displaystyle y=b}
叫做
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
的水平渐近线。例如,
y
=
3
{displaystyle y=3}
是曲线
x
y
=
3
x
+
2
{displaystyle xy=3x+2}
的水平渐近线。求渐近线,可以依据以下结论:若极限
lim
x
→
∞
f
(
x
)
x
=
a
{displaystyle lim _{xto infty }{frac {f(x)}{x}}=a}
存在,且极限
lim
x
→
+
∞
[
f
(
x
)
−
a
x
]
=
b
{displaystyle lim _{xto +infty }left=b}
也存在,那么曲线
y
=
f
(
x
)
{displaystyle y=fleft(xright)}
具有渐近线
y
=
a
x
+
b
{displaystyle y=ax+b}
。例:求
y
=
x
2
1
+
x
{displaystyle y={frac {x^{2}}{1+x}}}
的渐近线。解:(1)
x
=
−
1
{displaystyle x=-1}
为其垂直渐近线。(2)
lim
x
→
∞
f
(
x
)
x
=
lim
x
→
∞
x
1
+
x
{displaystyle lim _{xto infty }{frac {fleft(xright)}{x}}=lim _{xto infty }{frac {x}{1+x}}}
,即
a
=
1
{displaystyle a=1}
;lim
x
→
∞
[
f
(
x
)
−
a
x
]
=
lim
x
→
∞
−
x
1
+
x
=
−
1
{displaystyle lim _{xto infty }left=lim _{xto infty }{frac {-x}{1+x}}=-1}
,即
b
=
−
1
{displaystyle b=-1}
;所以
y
=
x
−
1
{displaystyle y=x-1}
也是其渐近线。
相关
- 配子配子(英语:Gamete)是单倍体细胞,它由行有性生殖的生物在特定的器官通过减数分裂产生。两性配子通过配子结合 产生合子。有性生殖的好处是遗传讯息的重组,这也是物种内遗传信息的
- 圣人基督宗教中,圣人(拉丁语:sanctus;希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter
- 圣殿骑士团圣殿骑士团(法语:Ordre du Temple),或神庙骑士团,正式全名为“基督和所罗门圣殿的贫苦骑士团”(拉丁语:Pauperes commilitones Christi Templique Solomonici),是存在于中世纪的天主
- KOsub3/sub臭氧化钾是一种无机化合物,化学式为KO3。它是橙红色的四方晶系晶体,空间群I4/mcm。臭氧化钾可由氢氧化钾和臭氧反应得到:超氧化钾用臭氧-氧气的混合物(体积比2:98)进行臭氧化,也能
- 契丹人契丹人,古代游牧民族,居住在今蒙古国及中国东北地区,采取半农半牧生活,语言属蒙古语族,但受通古斯语族强烈影响。而目前居住中国东北的达斡尔族可认定为契丹人直系后裔,部分吉尔吉
- 谢尔盖·索博列夫谢尔盖·利沃维奇·索博列夫(俄语:Серге́й Льво́вич Со́болев,1908年10月6日-1989年1月3日),苏联数学家,主要研究领域是数学分析及偏微分方程。索博列夫生
- 甲二醇甲二醇,又称一水甲醛,是一种有机化合物,化学式为CH2(OH)2。它是最简单的偕二醇,从形式上来说也是除甲醛外最简单的糖。甲二醇是甲醛(H₂C=O)的水合物。在甲醛的水溶液中,甲二醇大
- 统计物理统计力学(Statistical mechanics)是一个以玻尔兹曼等人提出以最大熵度理论为基础,借由配分函数 将有大量组成成分(通常为分子)系统中微观物理状态(例如:动能、势能)与宏观物理量统计
- 科目这是一个学科的列表。学科是在大学教学(教育)与研究的知识分科。学科是被发表研究和学术杂志、学会和系所所定义及承认的。领域通常有子领域或分科,而其之间的分界是随便且模
- 国联国家联盟(National League,简称国联)是美国职棒的组织之一,成立于1876年2月2日,前身为国家协会。1902年底,与美国联盟召开“辛辛那提会议”,统一赛制、规则和管理机制,并且从1903年