渐近线

✍ dations ◷ 2025-07-27 12:19:21 #渐近线
当任意曲线上一点 M {displaystyle M} 沿曲线无限远离原点时,如果 M {displaystyle M} 到一条直线(或另外一条曲线)的距离无限趋近于零,那么这条直线(曲线)称为这条曲线的渐近线。数学上的定义则是:若函数 y = f ( x ) {displaystyle y=fleft(xright)} 的图形收敛,则渐近线为 y = lim x → ∞ f ( x ) {displaystyle y=lim _{xto infty }fleft(xright)} 。例如,直线 y = b a x {displaystyle y={frac {b}{a}}x} 是双曲线 x 2 a 2 − y 2 b 2 = 1 {displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1} 的渐近线,因为双曲线上的点 M {displaystyle M} 到直线 y = b a x {displaystyle y={frac {b}{a}}x} 的距离 M Q < M N {displaystyle MQ<MN} ;当 M N {displaystyle MN} 无限趋近于0时, M Q {displaystyle MQ} 也无限趋近于0。所以按照定义,直线 y = b a x {displaystyle y={frac {b}{a}}x} 是该双曲线的渐近线。同理,直线 y = − b a x {displaystyle y=-{frac {b}{a}}x} 也是该双曲线的渐近线。对于 F ( x , y ) = 0 {displaystyle Fleft(x,yright)=0} 来说,如果当 x → a {displaystyle xrightarrow a} 时,有 y → ± ∞ {displaystyle yrightarrow pm infty } (左右极限不一定相等),就把 x = a {displaystyle x=a} 叫做 F ( x , y ) = 0 {displaystyle Fleft(x,yright)=0} 的垂直渐近线;如果当 x → ∞ {displaystyle xrightarrow infty } 时,有 y → b {displaystyle yrightarrow b} ,就把 y = b {displaystyle y=b} 叫做 F ( x , y ) = 0 {displaystyle Fleft(x,yright)=0} 的水平渐近线。例如, y = 3 {displaystyle y=3} 是曲线 x y = 3 x + 2 {displaystyle xy=3x+2} 的水平渐近线。求渐近线,可以依据以下结论:若极限 lim x → ∞ f ( x ) x = a {displaystyle lim _{xto infty }{frac {f(x)}{x}}=a} 存在,且极限 lim x → + ∞ [ f ( x ) − a x ] = b {displaystyle lim _{xto +infty }left=b} 也存在,那么曲线 y = f ( x ) {displaystyle y=fleft(xright)} 具有渐近线 y = a x + b {displaystyle y=ax+b} 。例:求 y = x 2 1 + x {displaystyle y={frac {x^{2}}{1+x}}} 的渐近线。解:(1) x = − 1 {displaystyle x=-1} 为其垂直渐近线。(2) lim x → ∞ f ( x ) x = lim x → ∞ x 1 + x {displaystyle lim _{xto infty }{frac {fleft(xright)}{x}}=lim _{xto infty }{frac {x}{1+x}}} ,即 a = 1 {displaystyle a=1} ;lim x → ∞ [ f ( x ) − a x ] = lim x → ∞ − x 1 + x = − 1 {displaystyle lim _{xto infty }left=lim _{xto infty }{frac {-x}{1+x}}=-1} ,即 b = − 1 {displaystyle b=-1} ;所以 y = x − 1 {displaystyle y=x-1} 也是其渐近线。

相关

  • 配子配子(英语:Gamete)是单倍体细胞,它由行有性生殖的生物在特定的器官通过减数分裂产生。两性配子通过配子结合 产生合子。有性生殖的好处是遗传讯息的重组,这也是物种内遗传信息的
  • 圣人基督宗教中,圣人(拉丁语:sanctus;希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter
  • 圣殿骑士团圣殿骑士团(法语:Ordre du Temple),或神庙骑士团,正式全名为“基督和所罗门圣殿的贫苦骑士团”(拉丁语:Pauperes commilitones Christi Templique Solomonici),是存在于中世纪的天主
  • KOsub3/sub臭氧化钾是一种无机化合物,化学式为KO3。它是橙红色的四方晶系晶体,空间群I4/mcm。臭氧化钾可由氢氧化钾和臭氧反应得到:超氧化钾用臭氧-氧气的混合物(体积比2:98)进行臭氧化,也能
  • 契丹人契丹人,古代游牧民族,居住在今蒙古国及中国东北地区,采取半农半牧生活,语言属蒙古语族,但受通古斯语族强烈影响。而目前居住中国东北的达斡尔族可认定为契丹人直系后裔,部分吉尔吉
  • 谢尔盖·索博列夫谢尔盖·利沃维奇·索博列夫(俄语:Серге́й Льво́вич Со́болев,1908年10月6日-1989年1月3日),苏联数学家,主要研究领域是数学分析及偏微分方程。索博列夫生
  • 甲二醇甲二醇,又称一水甲醛,是一种有机化合物,化学式为CH2(OH)2。它是最简单的偕二醇,从形式上来说也是除甲醛外最简单的糖。甲二醇是甲醛(H₂C=O)的水合物。在甲醛的水溶液中,甲二醇大
  • 统计物理统计力学(Statistical mechanics)是一个以玻尔兹曼等人提出以最大熵度理论为基础,借由配分函数 将有大量组成成分(通常为分子)系统中微观物理状态(例如:动能、势能)与宏观物理量统计
  • 科目这是一个学科的列表。学科是在大学教学(教育)与研究的知识分科。学科是被发表研究和学术杂志、学会和系所所定义及承认的。领域通常有子领域或分科,而其之间的分界是随便且模
  • 国联国家联盟(National League,简称国联)是美国职棒的组织之一,成立于1876年2月2日,前身为国家协会。1902年底,与美国联盟召开“辛辛那提会议”,统一赛制、规则和管理机制,并且从1903年