首页 >
渐近线
✍ dations ◷ 2025-08-16 18:56:57 #渐近线
当任意曲线上一点
M
{displaystyle M}
沿曲线无限远离原点时,如果
M
{displaystyle M}
到一条直线(或另外一条曲线)的距离无限趋近于零,那么这条直线(曲线)称为这条曲线的渐近线。数学上的定义则是:若函数
y
=
f
(
x
)
{displaystyle y=fleft(xright)}
的图形收敛,则渐近线为
y
=
lim
x
→
∞
f
(
x
)
{displaystyle y=lim _{xto infty }fleft(xright)}
。例如,直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
是双曲线
x
2
a
2
−
y
2
b
2
=
1
{displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1}
的渐近线,因为双曲线上的点
M
{displaystyle M}
到直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
的距离
M
Q
<
M
N
{displaystyle MQ<MN}
;当
M
N
{displaystyle MN}
无限趋近于0时,
M
Q
{displaystyle MQ}
也无限趋近于0。所以按照定义,直线
y
=
b
a
x
{displaystyle y={frac {b}{a}}x}
是该双曲线的渐近线。同理,直线
y
=
−
b
a
x
{displaystyle y=-{frac {b}{a}}x}
也是该双曲线的渐近线。对于
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
来说,如果当
x
→
a
{displaystyle xrightarrow a}
时,有
y
→
±
∞
{displaystyle yrightarrow pm infty }
(左右极限不一定相等),就把
x
=
a
{displaystyle x=a}
叫做
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
的垂直渐近线;如果当
x
→
∞
{displaystyle xrightarrow infty }
时,有
y
→
b
{displaystyle yrightarrow b}
,就把
y
=
b
{displaystyle y=b}
叫做
F
(
x
,
y
)
=
0
{displaystyle Fleft(x,yright)=0}
的水平渐近线。例如,
y
=
3
{displaystyle y=3}
是曲线
x
y
=
3
x
+
2
{displaystyle xy=3x+2}
的水平渐近线。求渐近线,可以依据以下结论:若极限
lim
x
→
∞
f
(
x
)
x
=
a
{displaystyle lim _{xto infty }{frac {f(x)}{x}}=a}
存在,且极限
lim
x
→
+
∞
[
f
(
x
)
−
a
x
]
=
b
{displaystyle lim _{xto +infty }left=b}
也存在,那么曲线
y
=
f
(
x
)
{displaystyle y=fleft(xright)}
具有渐近线
y
=
a
x
+
b
{displaystyle y=ax+b}
。例:求
y
=
x
2
1
+
x
{displaystyle y={frac {x^{2}}{1+x}}}
的渐近线。解:(1)
x
=
−
1
{displaystyle x=-1}
为其垂直渐近线。(2)
lim
x
→
∞
f
(
x
)
x
=
lim
x
→
∞
x
1
+
x
{displaystyle lim _{xto infty }{frac {fleft(xright)}{x}}=lim _{xto infty }{frac {x}{1+x}}}
,即
a
=
1
{displaystyle a=1}
;lim
x
→
∞
[
f
(
x
)
−
a
x
]
=
lim
x
→
∞
−
x
1
+
x
=
−
1
{displaystyle lim _{xto infty }left=lim _{xto infty }{frac {-x}{1+x}}=-1}
,即
b
=
−
1
{displaystyle b=-1}
;所以
y
=
x
−
1
{displaystyle y=x-1}
也是其渐近线。
相关
- 芽生菌病芽生菌病(英语:Blastomycosis),也被称为北美芽生菌病(英语:North American blastomycosis)、芽生菌性皮炎(英语:Blastomycetic dermatitis)、吉克力斯氏病(英语:Gilchrist's disease),一种
- 七月革命法国七月革命(法语:Révolution de Juillet;英语:July Revolution),是1830年欧洲的革命浪潮的序曲,因为波旁王室的专制统治令经历过法国大革命的法国人民难以忍受,以致法人群起反抗
- 潜水潜水泛指所有的水面下活动。包含使用压缩机由水面供气的潜水;由潜水员自行携带呼吸系统的水肺潜水;以及不携带呼吸系统,仅使用轻装备的自由潜水。根据潜水的方式和各自使用的不
- 何满潮何满潮(1956年5月-),河南灵宝阳店镇南家洼村人,矿山工程岩体力学专家。1981年毕业于长春地质学院(现吉林大学朝阳校区)水工系,1985年又取得该校硕士学位,1989年取得中国矿业大学北京
- 高雄港务局公路总局 民用航空局 高速公路局 航港局 铁道局台湾铁路管理局 中华邮政公司 台湾港务公司 桃园国际机场公司国道 省道 县道 - 市道(列表) 乡道 - 区道 专用公路 编号与名称对
- 夏季世界大学生运动会第二十九届夏季世界大学生运动会(英语:XXIX Summer Universiade,简称2017年台北大运会或台北大运会)于2017年8月19日至8月30日在中华民国台北市举行,为台湾首次举办世界大学生运
- 禁色禁色是被一些科学研究者宣称的在普通情况下无法看见的颜色,这些颜色是由成对的互补色组成,而这些互补色会相互抵消,使得人眼在一般情况下看不见它们。比如黄的蓝色、蓝的黄色、
- 大气物理学大气物理学 大气力学(英语:Synoptic scale meteorology)天气 (分类) · (主题)气候 (分类) 气候变迁 (分类)大气物理学是物理学于大气科学的应用。大气物理学家利用流体方程式
- 过失杀人过失致死罪(英语:negligent homicide)是一项成文罪行,是在没有杀人故意下,因疏忽、违反保护他人的法律或规则、或粗心大意而引致他人死亡。虽然此罪行在法律上的名称为“过失致死
- 苦杏仁苷扁桃苷(Amygdalin,源自希腊语“扁桃”ἀμυγδάλη amygdálē ),又名苦杏仁苷,是许多植物中发现的一种有毒的氰苷,但最引人注目的是存在于杏、苦杏仁、苹果、桃及梅子等植物