Colpitts振荡器

✍ dations ◷ 2025-11-17 13:34:38 #振荡器,电子设计

考毕兹振荡器(英语:Colpitts oscillator),又称考毕子振荡器,电容三点式振荡器,电容反馈式振荡器,是由美国电气工程师艾德温·考毕兹(英语:Edwin H. Colpitts)于1918年发明的一种LC振荡器(利用电容和电感结合决定振荡频率的电子振荡器)设计。 Colpitts振荡器的特点是有源器件的反馈来自一个与电感串联的,由两个电容构成的分压器。

像其他的LC振荡器一样,Colpitts电路由一个增益器件(如双极结型晶体管、场效应管、运算放大器或真空管)的输出连在它的输入上,反馈回路包含一个LC并联电路(调谐电路)作为一个带通滤波器固定振荡频率。Colpitts振荡器可以看成是Hartley振荡器的对偶,在哈特莱振荡器中反馈信号来自用两个线圈串联(或是一个抽头线圈)组成的“感性”分压器。图1显示了共基极Colpitts电路。 和串联组合的 12 构成的并联谐振电路决定了振荡器的频率。在 2 两端的电压作为反馈施加到晶体管的基极-发射极结,用以产生振荡。图2显示了共集极版本。这里 1 两端的电压提供反馈。振荡频率约为LC电路(即两个电容器与电感的串联组合)的谐振频率,

由于结电容和晶体管的阻性负载,振荡的实际频率会略微降低。

与任何振荡器一样,为了稳定工作,有源元件的放大率应略大于电容分压器的衰减。因此,使用可变电感可变频率振荡器(英语:variable frequency oscillator)调谐时,相对于调整两个电容的其中一个来说,可使Colpitts振荡器达到最佳性能。若需采用可变电容器调谐,应该将第三个电容与电感并接(或者像在克拉普振荡器中那样串联)。

图3显示了标有器件参数的一个工作示例。除了双极性晶体管,还可以使用能够在所需的频率产生场效应管或真空管等有源器件。

基地的电容为可能会产生不需要的频率的寄生电感提供一条交流通路接地。 基极偏置电阻的选择并不简单。到达临界偏置电流时周期性振荡开始,并会随着偏置电流变化到一个更高的值,会观测到混沌振荡。

分析振荡器的其中一种方法是在忽略反馈影响的情形下计算其中一个输入端对应的输入阻抗,若算出的输入阻抗是负值则有可能出现振荡。以下利用这种方法决定振荡条件与振荡频率。

右边是一个理想模型。此模型是使用前一节中提到的共集电极放大器。一开始把寄生电容或其他非线性元件的影响忽略,等到分析结束后再把这些项代回以进行更确确的计算。虽然看起来忽略了不少东西,但计算出的解与实验结果相比之后,仍然是可接受的。

忽略电感,所以输入阻抗可以写成:

v 1 {\displaystyle v_{1}} 为输入电压, i 1 {\displaystyle i_{1}} 为输入电流,电压 v 2 {\displaystyle v_{2}} 的值是根据下式:

Z 2 {\displaystyle Z_{2}} 的值为 C 2 {\displaystyle C_{2}} 的阻抗。流入 C 2 {\displaystyle C_{2}} 的电流值为 i 2 {\displaystyle i_{2}} ,这个值是另外两个电流值的和:

电流值 i s {\displaystyle i_{s}} 为BJT输出的电流。 i s {\displaystyle i_{s}} 的值可以用下式计算:

g m {\displaystyle g_{m}} 是BJT的跨导(transconductance)。另外一个电流值 i 1 {\displaystyle i_{1}} 的表示式为:

式子中的 Z 1 {\displaystyle Z_{1}} C 1 {\displaystyle C_{1}} 的阻抗。解出 v 2 {\displaystyle v_{2}} 的表示式,代回可得:

输入阻抗看起来像是两个电容的阻抗与一个奇妙的项串连。因 R i n {\displaystyle R_{in}} 与两个电容的阻抗积成正比:

Z 1 {\displaystyle Z_{1}} Z 2 {\displaystyle Z_{2}} 为同号复数, R i n {\displaystyle R_{in}} 便会是负阻抗(negative resistance)。若 Z 1 {\displaystyle Z_{1}} Z 2 {\displaystyle Z_{2}} j ω C 1 {\displaystyle j{\omega }C_{1}} j ω C 2 {\displaystyle j{\omega }C_{2}} 代入 R i n {\displaystyle R_{in}}

若电感连接输入,当负阻抗的绝对值比电感的阻抗大的时候,此电路会开始振荡。振荡频率可见上一节的表示式。

以之前的振荡器为例,发射极电流大约是1毫安培。跨导约40毫西门子(Simens),代入上面的表示式,输入阻抗约为:

式中负阻抗的绝对值已足以超过电路中的任何电阻。在验算时会发现:振荡在更大的跨导与更小的电容之下更容易发生。共基极振荡器的更复杂的分析表明,一个低频放大器电压增益至少为四才能实现振荡。 低频增益为:

若把这两个电容换成电感,并忽略电感间磁偶合的影响,则电路就变成了Hartley振荡器。如此一来,输入阻抗为两个电感值的和,而负阻抗可以写成:

在Hartley振荡器的电路中,振荡在更大的跨导及更大的电感值之下更容易发生。

有趣的是,在上述分析还可以描述皮尔斯震荡器的行为。皮尔斯振荡器,有两个电容和一个电感,与Colpitts振荡器等效。 可以通过将两个电容器之间设为接地点来证明。使用两个电感和一个电容的标准皮尔斯振荡器的电学对偶与哈特莱振荡器等价。

振荡的振幅一般很难预测,但往往可以用描述函数(英语:describing function)方法准确地估计使的。

对于图1中常见的基准振荡器,该方法施加在一个简化模型中可以预测输出(集电极)的电压幅值:

其中 I C {\displaystyle I_{C}} 是偏置电流,而 R L {\displaystyle R_{L}} 是集电极的负载电阻。

这里假设该晶体管不饱和,集电极电流以窄脉冲流过,输出电压为正弦(低失真)。

这种近似的结果也适用于采用不同有源器件的振荡器,如MOSFET和真空管。

相关

  • 墨西拿墨西拿(意大利语:Messina)是意大利西西里岛上第三大的城市,也是墨西拿省的首府。墨西拿在西西里岛的东北角,正对墨西拿海峡。墨西拿为古代来自希腊麦西尼亚的殖民者于公元前8世记
  • 沙泉市桑迪斯普林斯(英语:Sandy Springs),美国佐治亚州富尔顿县的一个城市,是亚特兰大的一个郊区。桑迪斯普林斯成立于2005年12月。2006年,该市估计有85,771人口,名列佐治亚州第8大城市。
  • 贝类学动物学人类学 · 人与动物关系学 蜜蜂学 · 节肢动物学 医学节肢动物学 · 鲸类学 贝类学 · 昆虫学 动物行为学 · 蠕虫学 两栖爬行动物学 · 鱼类学 软体动物学 · 哺乳动
  • 抚广片赣语抚广片,赣语九个方言片之一。主要通行于江西的抚州市、临川、崇仁、宜黄、乐安、南城、黎川、资溪、金溪、东乡、进贤、南丰、广昌(部分),和福建的建宁、泰宁等地。
  • 日本政治 政治主题日本的政治以日本国宪法所规定的体制为基础运行。因此,日本是以立宪主义为基础的国家。另外,日本的司法、行政是以宪法和国会所制定的法律、明文化了的法令为基础运
  • 贝蒂·伯伊德贝蒂·伯伊德(英语:Pattie Boyd),曾用名贝蒂·伯伊德·哈里森或贝蒂·克莱普顿(1944年3月17日-),英国模特儿和摄影师。她因先后嫁给两位摇滚乐音乐家乔治·哈里森和艾瑞克·克莱普顿
  • 列米吉尤斯·希马修斯列米吉尤斯·希马修斯(立陶宛语:Remigijus Šimašius,1974年1月12日-)是一位立陶宛法学家和政治家。他在2012年至2016年期间出任国会议员,在2008年至2012年出任立陶宛法务部长。
  • 钼青铜钼青铜是一类组成为MxMoyOz的混合氧化物,其中M可以是氢、碱金属或铊(I)。钼青铜一词源于其色泽深。部分占据的4d带使它们有着金属特性。在化合物K0.28MoO3中,钼的氧化态为+5.7
  • 卡库伊德王朝卡库伊德王朝(Kakuyids,也可拼成 Kakwayhids,Kakuwayhids, 或 Kakuyah)(波斯语:آل کاکویه‎)是一个德莱木人(英语:Daylamite)的王朝,统治区域包括波斯西部,吉巴尔(英语:Jibal),还有波
  • 胡达源胡达源(1778年-1841年),字清甫,号云阁,室名文妙香轩、闻妙香室。湖南省长沙府益阳县(今益阳市赫山区)人,清朝政治人物、理学家。父亲胡显韶为诸生,博览经书、史书,以《小学》、《近思录