直积

✍ dations ◷ 2025-12-06 17:32:24 #抽象代数,二元运算

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,经常定义已知对象的直积(direct product)来给出新对象。例子有集合的乘积(参见笛卡尔积),群的乘积(下面描述),环的乘积和其他代数结构的乘积。拓扑空间的乘积是另一个例子。

以类似的方式,我们可以谈论多于两个对象的乘积,比如 R × R × R × R {\displaystyle \mathbb {R} \times \mathbb {R} \times \mathbb {R} \times \mathbb {R} } , *) 和 (, o) 的直积,指示为 × 。对于写为加法的阿贝尔群,它也可以叫做两个群的直和,指示为 G H {\displaystyle G\oplus H} (构成自形如 (, 1) 的元素)的一个正规子群,和同构于 (构成自元素 (1, ))的一个正规子群。

逆命题也成立,有下列识别定理: 如果群 包含两个正规子群 和 ,使得 = 并且 和 的交集只包含单位元,则 同构于 × 。将其中一个正规子群条件弱化为一般子群则给出半直积。

作为一个例子,选取 和 是唯一(不别同构之异) 2 阶群 2 的两个复本: 即 {1, } 和 {1, }。则 2×2 = {(1,1), (1,), (,1), (,)},带有逐元素运算。例如,(1,)*(,1) = (1*, *1) = (,),而 (1,)*(1,) = (1,2) = (1,1)。

通过直积,我们得到一些自然群同态: 投影映射

叫做坐标函数。

还有,在直积上的所有同态 都完全决定自它的分量(component)函数 f i = π i f {\displaystyle f_{i}=\pi _{i}\circ f} , *),和任何整数 ≥ 0,多次应用直积得到所有 -元组的群 (=0 时是平凡群)。例如:

模的直积(不要混淆于张量积)非常类似于上述群直积的定义,使用笛卡尔积带有逐分量的加法运算,和只分布在所有分量上的标量乘法运算。开始于 R 我们得到欧几里得空间 R,它是实 -维向量空间的原型例子。R 和 R 的直积是 R + 。

注意有限索引 i = 1 n X i {\displaystyle \prod _{i=1}^{n}X_{i}} 中只有有着有限多个非零元素的序列。例如, 在 中但 不在。这两种序列都在直积 中;事实上, 是 的真子集(也就是 ⊂)。

拓扑空间的搜集 即对于 在 中的某个索引集合的直积,再次利用了笛卡尔积

定义拓扑是有些技巧的。对于有限多个因子这是明显和自然的事情: 简单的选取开集构成的基为来自每个因子的开子集的所有笛卡尔积的搜集:

这个拓扑叫做乘积拓扑。例如,直接通过 R 的开集们(开区间的不交并)定义在 R2 上的乘积拓扑,这个拓扑的基由在平面上的开矩形的所有不交并构成(明显的它一致于平常的度量拓扑)。

无限乘积的拓扑就有些曲折了,要能够确使所有投影映射连续,并确使所有到乘积中的函数连续当且仅当所有它的分量函数是连续的(就是满足乘积范畴定义: 这里的态射是连续函数): 我们同上面一样的选取的开集构成的基围来自每个因子的开子集的所有笛卡尔积的搜集,但带有除了有限多个开子集之外所有都是整个因子的限制条件:

在这种情况下更自然可靠的拓扑将是如上那样选取无限多个开子集的乘积,而这产生了有些意思的拓扑,即盒拓扑,但是不难找到其乘积函数不是连续的连续分量函数丛(例子请参见盒拓扑的条目)。使这种曲折成为必须的问题最终根源于在拓扑定义中开集的交集对无限多集合不保证是开集的事实。

乘积(带有乘积拓扑)关于保持它们因子的性质是良好的;例如,豪斯多夫空间的乘积是豪斯多夫空间;连通空间的乘积是连通空间,而紧致空间的乘积是紧致空间。最后一个也叫做吉洪诺夫定理,它是选择公理的另一个等价形式。

更多的形式和等价公式请参见单独条目乘积拓扑。

在带有二元关系 和 的两个集合上的笛卡尔积上,定义 (, ) T (, ) 为 并且 。如果 和 都是自反的、反自反的、传递的、对称的或反对称的,则 有同样性质。 组合各性质,可得出这还适用于作为预序和作为等价关系情况。但是如果 和 是完全关系, 一般不是。

在度量空间的笛卡尔积上的度量,和在赋范向量空间的直积上的范数,可以用各种方式定义,例子请参见p-范数。

相关

  • MSDS化学品安全技术说明书(英语:Material Safety Data Sheet,缩写:MSDS)是一个包含了某种物质相关数据的文档。 中国在2009年2月1日实施之最新国家推荐标准GB/T 16483-2008《化学品安
  • 战马战马是人类用于战斗的马。人类使用马匹战斗已有超过5000年的历史。骑马作战的最早证据可追溯至公元前4000年至前3000年的欧亚大陆。到了前1600年,经改进的马具及两轮无篷马车
  • 黄玉荣黄玉荣(1977年4月1日-),出生于台湾花莲,毕业于醒吾商业专科学校,客家人、台湾知名男艺人,为前团体183club成员之一,有“东海小王子”之称,平时十分热爱运动,目前是乡土剧新生代的小生,2
  • 泰赤乌部泰赤乌部(蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang Tig","Menk Qagan Tig","Menk Garqag Tig","Menk Har_a Tig","Menk Scnin Tig","Oyun Gurban Ulus
  • FasTrakFasTrak是美国加利福尼亚州使用的电子道路收费系统,主要负责加州高速及快速公路系统的收费路段、桥梁和收费高乘载车道的收费。
  • 背靠背连接背靠背连接是指将输出设备与相似或相关的输入设备进行直接连接。在通信中,背靠背连接是指不通过传输线将发送器与接收器相连接。通常用来测量和测试,因为背靠背连接可以排除
  • 大绿金刚鹦鹉大绿金刚鹦鹉(学名:Ara ambiguus;英语:Great Green Macaw,Buffon's Macaw)生活在哥伦比亚、哥斯达黎加、巴拿马以及尼加拉瓜等地。成年体长85厘米。身体主要为黄绿色,与军舰金刚鹦
  • 组织喻象《组织意象》(The Images of Organization),由美国学者加雷斯·莫根(Gareth Morgan)所著,其运用八个隐喻来叙述公共事务中的组织结构及行为差异。官僚制度发展的基石,有效却笨拙:一
  • 亚当·布罗迪亚当·布罗迪(英语:Adam Jared Brody,1979年12月15日-),生于美国加州,犹太人,童星出身的美国男演员。
  • 礼乐志礼乐志,中国《二十四史》中记载历代礼仪制度、音乐典章制度及记述宫廷音乐发展状况的篇章。《汉书》有《礼乐志》 一卷,即《汉书》卷二十二。记述西汉礼乐制度的作用及其发展,