直积

✍ dations ◷ 2025-11-25 01:16:59 #抽象代数,二元运算

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,经常定义已知对象的直积(direct product)来给出新对象。例子有集合的乘积(参见笛卡尔积),群的乘积(下面描述),环的乘积和其他代数结构的乘积。拓扑空间的乘积是另一个例子。

以类似的方式,我们可以谈论多于两个对象的乘积,比如 R × R × R × R {\displaystyle \mathbb {R} \times \mathbb {R} \times \mathbb {R} \times \mathbb {R} } , *) 和 (, o) 的直积,指示为 × 。对于写为加法的阿贝尔群,它也可以叫做两个群的直和,指示为 G H {\displaystyle G\oplus H} (构成自形如 (, 1) 的元素)的一个正规子群,和同构于 (构成自元素 (1, ))的一个正规子群。

逆命题也成立,有下列识别定理: 如果群 包含两个正规子群 和 ,使得 = 并且 和 的交集只包含单位元,则 同构于 × 。将其中一个正规子群条件弱化为一般子群则给出半直积。

作为一个例子,选取 和 是唯一(不别同构之异) 2 阶群 2 的两个复本: 即 {1, } 和 {1, }。则 2×2 = {(1,1), (1,), (,1), (,)},带有逐元素运算。例如,(1,)*(,1) = (1*, *1) = (,),而 (1,)*(1,) = (1,2) = (1,1)。

通过直积,我们得到一些自然群同态: 投影映射

叫做坐标函数。

还有,在直积上的所有同态 都完全决定自它的分量(component)函数 f i = π i f {\displaystyle f_{i}=\pi _{i}\circ f} , *),和任何整数 ≥ 0,多次应用直积得到所有 -元组的群 (=0 时是平凡群)。例如:

模的直积(不要混淆于张量积)非常类似于上述群直积的定义,使用笛卡尔积带有逐分量的加法运算,和只分布在所有分量上的标量乘法运算。开始于 R 我们得到欧几里得空间 R,它是实 -维向量空间的原型例子。R 和 R 的直积是 R + 。

注意有限索引 i = 1 n X i {\displaystyle \prod _{i=1}^{n}X_{i}} 中只有有着有限多个非零元素的序列。例如, 在 中但 不在。这两种序列都在直积 中;事实上, 是 的真子集(也就是 ⊂)。

拓扑空间的搜集 即对于 在 中的某个索引集合的直积,再次利用了笛卡尔积

定义拓扑是有些技巧的。对于有限多个因子这是明显和自然的事情: 简单的选取开集构成的基为来自每个因子的开子集的所有笛卡尔积的搜集:

这个拓扑叫做乘积拓扑。例如,直接通过 R 的开集们(开区间的不交并)定义在 R2 上的乘积拓扑,这个拓扑的基由在平面上的开矩形的所有不交并构成(明显的它一致于平常的度量拓扑)。

无限乘积的拓扑就有些曲折了,要能够确使所有投影映射连续,并确使所有到乘积中的函数连续当且仅当所有它的分量函数是连续的(就是满足乘积范畴定义: 这里的态射是连续函数): 我们同上面一样的选取的开集构成的基围来自每个因子的开子集的所有笛卡尔积的搜集,但带有除了有限多个开子集之外所有都是整个因子的限制条件:

在这种情况下更自然可靠的拓扑将是如上那样选取无限多个开子集的乘积,而这产生了有些意思的拓扑,即盒拓扑,但是不难找到其乘积函数不是连续的连续分量函数丛(例子请参见盒拓扑的条目)。使这种曲折成为必须的问题最终根源于在拓扑定义中开集的交集对无限多集合不保证是开集的事实。

乘积(带有乘积拓扑)关于保持它们因子的性质是良好的;例如,豪斯多夫空间的乘积是豪斯多夫空间;连通空间的乘积是连通空间,而紧致空间的乘积是紧致空间。最后一个也叫做吉洪诺夫定理,它是选择公理的另一个等价形式。

更多的形式和等价公式请参见单独条目乘积拓扑。

在带有二元关系 和 的两个集合上的笛卡尔积上,定义 (, ) T (, ) 为 并且 。如果 和 都是自反的、反自反的、传递的、对称的或反对称的,则 有同样性质。 组合各性质,可得出这还适用于作为预序和作为等价关系情况。但是如果 和 是完全关系, 一般不是。

在度量空间的笛卡尔积上的度量,和在赋范向量空间的直积上的范数,可以用各种方式定义,例子请参见p-范数。

相关

  • 古吉拉特语古吉拉特语(ગુજરાતી,拉丁化:Gujarātī)属于印欧语系印度-伊朗语族的印度-雅利安语支,为印度22种官方语言与14种地区性语言之一,同时也是巴基斯坦少数民族语言。全球有大约
  • 血泪之路西进运动(Westward Movement)是指美东居民向美西地区迁移和进行开发的群众性运动,始于美国独立之后的18世纪末,终于19世纪末20世纪初。此运动大大促进了美国军事与经济的发展,西
  • 洪洞大槐树洪洞大槐树,又称古大槐树,山西大槐树,位于中国山西省洪洞县城西北二公里的贾村西侧的大槐树公园内,是明代的一处移民基地。元朝末年,自然灾害频有发生,黄河地区水患尤其严重。同时
  • 休斯敦乔治布什洲际机场乔治·布什洲际机场(英语:George Bush Intercontinental Airport,IATA代码:IAH;ICAO代码:KIAH;FAA代码:IAH),是一座位于美国得克萨斯州休斯敦的民用机场。2006年的客运量是1520万人,是
  • 汉语词类根据传统汉语语法,汉语词类可以分为实词、虚词两大类,下可再分为十四小类。 名词是表示人、事物、时间、空间等等的词。动词是表示人或事物的行为、动作、变化或互相作用等等
  • 弗里德里希·道恩弗里德里希·恩斯特·道恩(Friedrich Ernst Dorn,1848年– 1916年),德国物理学家,元素氡(Rn)的发现者。弗里德里希·道恩生于普鲁士王国普鲁士省古特施塔特(今为波兰多布雷城)。190
  • Young Animal《Young Animal》(日语:ヤングアニマル)由日本白泉社发行的青年漫画杂志。发售日为每月的第2和第4个星期五,1992年创刊。此杂志虽然是少年漫画杂志,但是其中有许多作品是成年向的
  • 周传诵周传诵(?-?),陕西西安府咸宁县人,西安左卫籍,明朝政治人物。万历十七年(1589年)己丑科进士。历山西参政,升河南按察使。官至湖广左布政使。父周宇。
  • 站起来 (政党)站起来(巴斯克语:Zutik)是西班牙巴斯克自治区的一个已不存在的左翼政党。该党成立于1991年3月,由巴斯克共产主义运动和革命共产主义联盟(原第四国际西班牙支部)巴斯克分支合并而成
  • 澳大利亚的女性与政府从20世纪初,澳大利亚女性开始参与政府事务。实行联邦制(英语:Federation of Australia),新成立的澳大利亚联邦政府通过了1902年联邦选举法(英语:Commonwealth Franchise Act 1902),允