直积

✍ dations ◷ 2025-04-04 11:12:10 #抽象代数,二元运算

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,经常定义已知对象的直积(direct product)来给出新对象。例子有集合的乘积(参见笛卡尔积),群的乘积(下面描述),环的乘积和其他代数结构的乘积。拓扑空间的乘积是另一个例子。

以类似的方式,我们可以谈论多于两个对象的乘积,比如 R × R × R × R {\displaystyle \mathbb {R} \times \mathbb {R} \times \mathbb {R} \times \mathbb {R} } , *) 和 (, o) 的直积,指示为 × 。对于写为加法的阿贝尔群,它也可以叫做两个群的直和,指示为 G H {\displaystyle G\oplus H} (构成自形如 (, 1) 的元素)的一个正规子群,和同构于 (构成自元素 (1, ))的一个正规子群。

逆命题也成立,有下列识别定理: 如果群 包含两个正规子群 和 ,使得 = 并且 和 的交集只包含单位元,则 同构于 × 。将其中一个正规子群条件弱化为一般子群则给出半直积。

作为一个例子,选取 和 是唯一(不别同构之异) 2 阶群 2 的两个复本: 即 {1, } 和 {1, }。则 2×2 = {(1,1), (1,), (,1), (,)},带有逐元素运算。例如,(1,)*(,1) = (1*, *1) = (,),而 (1,)*(1,) = (1,2) = (1,1)。

通过直积,我们得到一些自然群同态: 投影映射

叫做坐标函数。

还有,在直积上的所有同态 都完全决定自它的分量(component)函数 f i = π i f {\displaystyle f_{i}=\pi _{i}\circ f} , *),和任何整数 ≥ 0,多次应用直积得到所有 -元组的群 (=0 时是平凡群)。例如:

模的直积(不要混淆于张量积)非常类似于上述群直积的定义,使用笛卡尔积带有逐分量的加法运算,和只分布在所有分量上的标量乘法运算。开始于 R 我们得到欧几里得空间 R,它是实 -维向量空间的原型例子。R 和 R 的直积是 R + 。

注意有限索引 i = 1 n X i {\displaystyle \prod _{i=1}^{n}X_{i}} 中只有有着有限多个非零元素的序列。例如, 在 中但 不在。这两种序列都在直积 中;事实上, 是 的真子集(也就是 ⊂)。

拓扑空间的搜集 即对于 在 中的某个索引集合的直积,再次利用了笛卡尔积

定义拓扑是有些技巧的。对于有限多个因子这是明显和自然的事情: 简单的选取开集构成的基为来自每个因子的开子集的所有笛卡尔积的搜集:

这个拓扑叫做乘积拓扑。例如,直接通过 R 的开集们(开区间的不交并)定义在 R2 上的乘积拓扑,这个拓扑的基由在平面上的开矩形的所有不交并构成(明显的它一致于平常的度量拓扑)。

无限乘积的拓扑就有些曲折了,要能够确使所有投影映射连续,并确使所有到乘积中的函数连续当且仅当所有它的分量函数是连续的(就是满足乘积范畴定义: 这里的态射是连续函数): 我们同上面一样的选取的开集构成的基围来自每个因子的开子集的所有笛卡尔积的搜集,但带有除了有限多个开子集之外所有都是整个因子的限制条件:

在这种情况下更自然可靠的拓扑将是如上那样选取无限多个开子集的乘积,而这产生了有些意思的拓扑,即盒拓扑,但是不难找到其乘积函数不是连续的连续分量函数丛(例子请参见盒拓扑的条目)。使这种曲折成为必须的问题最终根源于在拓扑定义中开集的交集对无限多集合不保证是开集的事实。

乘积(带有乘积拓扑)关于保持它们因子的性质是良好的;例如,豪斯多夫空间的乘积是豪斯多夫空间;连通空间的乘积是连通空间,而紧致空间的乘积是紧致空间。最后一个也叫做吉洪诺夫定理,它是选择公理的另一个等价形式。

更多的形式和等价公式请参见单独条目乘积拓扑。

在带有二元关系 和 的两个集合上的笛卡尔积上,定义 (, ) T (, ) 为 并且 。如果 和 都是自反的、反自反的、传递的、对称的或反对称的,则 有同样性质。 组合各性质,可得出这还适用于作为预序和作为等价关系情况。但是如果 和 是完全关系, 一般不是。

在度量空间的笛卡尔积上的度量,和在赋范向量空间的直积上的范数,可以用各种方式定义,例子请参见p-范数。

相关

  • 氧的同素异形体人们对氧的同素异形体有着各种认知。其中最熟悉的是双氧(O2),大量存在于地球大气层,也被称为分子氧或三线态氧。另一个是高活性的臭氧(O3)。其他包括:原子氧有非常高的活性,很难长时
  • 毕摩教毕摩(彝语北部方言:ꀘꂾ,注音:bi mox)是彝族从事原始宗教和文化活动的人,相当于巫师,祭司,经师。“毕”意即诵经者,“摩”即大。毕摩有文化,掌握古彝文和本民族的文化习俗,历史和宗教等
  • 定量分析需要测定物质(化合物)中各组分的相对含量的分析方法为定量分析。一般需要先进行定性分析,确定物质组分后,再选择合适的分析方法进行定量分析,因为对不同的组分元素或离子,有不同的
  • 卡特中心卡特中心(The Carter Center)位于美国乔治亚州亚特兰大,是由美国前总统吉米·卡特和前第一夫人罗莎琳·卡特于1982年建立的非营利性组织,主要致力于改善逾65个国家人民的生活品
  • 有机合成 (期刊)《有机合成》(,常缩写为 )是一个化学领域的学术期刊。有机合成为年刊,于1921年创刊,提供各种有关有机合成的资料。1998年,其编者决定将以前和以后要发行的期刊放到互联网上,开放权
  • 南萨米语南萨米语(åarjelsaemien gïele)是萨米语支中使用者居住地区最西南部的一门语言。南萨米语被列为濒危语言。南萨米语的使用者大多居住在挪威的斯诺萨和哈特菲耶尔达尔市镇。
  • 焖子焖子是在流行于胶辽、河北、河南和天津等地区的特色小吃。在大连、烟台、丹东、行唐、定州、天津、秦皇岛等地皆有分布。主要成分为淀粉制成的凉皮、凉粉等,并佐以芝麻酱等制
  • 范良锈范良锈(1946年8月15日-),桃园新屋人,曾任行政院公共工程委员会主任委员,总统府国策顾问。
  • 罗伯特·莱克罗伯特·莱克(英语:Robert Reich, 1946年6月24日-),美国劳工部前部长、政治家、学者、作家、时事评论员,美国加州大学伯克利分校公共关系学教授。罗伯特·莱克(Robert Reich)1946年
  • 多洛米蒂航空多洛米蒂航空(意大利语:Air Dolomiti S.p.A. Linee Aeree Regionali Europee)是一间支线航空公司。总站位于意大利维罗纳,为汉莎区域航空的子公司,由德国汉莎航空第二枢纽机场慕