多稳态模棱函数

✍ dations ◷ 2025-12-04 05:03:32 #函数,信号处理

多稳态模棱函数(Multistatic ambiguity functions),是由模棱函数延伸而来的几率模型,用以模拟多组雷达侦测同一目标的状况。

多稳态模棱函数是由模棱函数延伸用以模拟多稳态雷达系统,其中针对同一目标有许多并列的发送器及接收器。

在这样的情况下,时间和位置之间、简单如单稳态雷达(Monostatic Radar System)的线性关系不再适用,而是关乎于此传输系统之几何特性之下(发送器、接收器和目标物的相对关系共组之三角型)。

因此,多稳态模棱函数多在此时适用,作为表达此组二或三维雷达侦测系统各部分之间的相对关系及传输状况:包刮相对或绝对位置、目标物座标系之速度等,是为一多稳态函式。

就像单稳态模棱函数是与滤波器匹配,多稳态模棱函数则是来自与其相应之多稳态光学侦测器,例如:因为所有接收器间的协调运算(joint processing)、而得以提供固定错误回报几率,并使得接受几率最大化者。如是侦测算法之特性,需依靠在此多稳态系统中、每个双稳态偶对观察到的目标波动是否相关而定。若相关,则侦测器间相位将呈现于接收到的信号上呈现相关性加总(coherent summation),因而对目标之定位正确率有很大的帮助。

若非,则侦测器将表现非相关加总(incoherent summation)的效果因而有多样化的放大倍率,难以定位正确目标。

在没有噪声干扰的情况下,广义的稳态情况被定义为

而我们定义广义的模棱函数维:

其中: τ a = {\displaystyle \tau _{a}=} ,而E表示期望值、K表示一标准化的常数使得

此时若我们给定一固定目标(即有固定的: τ a , ω D d {\displaystyle \tau _{a},\omega _{Dd}} )时,此函式为一二维函数。

而既然在我们对于使用此函数的情况下通常以知晓目标位置及目标速度为目的,以上述相关变数为依据来表示模棱函数将使计算更为容易。

而在讯号源都普勒效应作用以及本身延迟,以及目标自己座标系之速度向量,使得将此函式之解为高度非线性。而以此方式模型接收讯号之多稳态雷达系统计算,便显得相当困难,且具有一定程度的重要性。

而为了简化这样的计算,且更重要地,准确地描述上述系统的几何特性,我们将所有讯号接收器依照平行于目标之速度排列。

且为了简化观察困难,我们通常选取三维空间中之二维做为来代表多稳态模棱函数之表现;更广义而言,我们可以给定任一属于目标和其速度及雷达系统间关系六维关系之子集合以定义我们所需支函式。

相关

  • 吕底亚国王列表吕底亚国王列表:
  • 维生素B12维生素B12(Vitamin B12)为B族维生素之一,是一类含钴的复杂有机化合物。分子结构是以钴离子为中心的咕啉环和5,6-二甲基苯并咪唑为碱基组成的核苷酸。化学式为C63H88O14N14PCo,分
  • FeCsub2/subOsub4/sub草酸亚铁(化学式:FeC2O4)是铁(II)的草酸盐,黄色晶体,难溶于水,缓慢溶于浓盐酸。草酸亚铁可由Fe2+与C2O42-在溶液中的反应制得:如将硫酸酸化的硫酸亚铁铵和草酸溶液混合,加热并搅拌,静
  • 张锁江张锁江(1964年11月-),河南林州人。化学工程专家。1986年毕业于河南大学,1989年在河南师范大学获硕士学位,1994年在浙江大学获博士学位。1994年3月至1995年10月,任北京化工大学博士
  • 自卫杀人自卫杀人(英语:Justifiable homicide),是指自我防卫杀人,目的是为求自己遭遇生命危急之时,必须借由杀人做出防卫行为。现今各国之法律定义并不相同,在法律上所谓自卫乃系指“正当防
  • 祖父条款祖父条款(英语:Grandfather clause),相对于追溯法令,是代表一种允许在旧有建制下已存的事物不受新通过条例约束的特例(“老人老办法,新人新办法。”)。英语中的“祖父”(grandfather)
  • 开泰寺站开泰寺站(朝鲜语:개태사역/開泰寺驛  */?)是位于韩国忠清南道论山市连山面的一个车站,属于湖南线。
  • 东营市黄河口湿地博物馆东营市黄河口湿地博物馆,位于东营市东营区东城沂河路95号,背靠东营市湿地公园。于2004年2月落成。博物馆现有5个展厅,博物馆占地面积达7856平方米,建筑物面积为3751平方米,是中国
  • 瓦扎克卡拉瓦扎克卡拉(Vazhakkala),是印度喀拉拉邦Ernakulam县的一个城镇。总人口42272(2001年)。该地2001年总人口为42272人,其中男性占了20896人,女性21376人,女性比男性多出480人;0—6岁人口
  • 长泽由利香长泽由利香(日语:長沢 ゆりか,1968年1月27日-),日本女歌手、创作歌手、配音员、前偶像艺人。出身于福岛县须贺川市。堀越高等学校毕业。Musical Unlimited(屋号:Peak A Soul+)纪经公