Θ函数

✍ dations ◷ 2025-11-25 00:39:10 #Θ函数,椭圆函数,模形式,黎曼曲面

数学中,Θ函数是一种多复变(英语:Several complex variables)特殊函数。其应用包括阿贝尔簇(英语:Abelian variety)与模空间、二次形式、孤立子理论;其格拉斯曼代数推广亦出现于量子场论,尤其于超弦与D-膜理论。

Θ函数最常见于椭圆函数理论。相对于其“” 变量,Θ函数是拟周期函数(quasiperiodic function),具有“拟周期性”。在一般下降理论(英语:Descent (mathematics))中,Θ函数是来自线丛(英语:Line bundle)条件。

雅可比Θ函数取二变量 z {\displaystyle z\,} )。

若用变量 q = e π i τ {\displaystyle q=e^{\pi i\tau }\,} 取实值时尤为重要。各辅助Θ函数亦有类似之积公式:

雅可比Θ函数可用积分表示,如下:

黎曼常用关系式

以证黎曼ζ函数之函数方程。他写下等式:

而此积分于替换 s 1 s {\displaystyle s\to 1-s} ,而常数使 ( z ) {\displaystyle \wp (z)} = 0)常项为零,因为雅可比椭圆函数单位胞腔内两极点互为相反数,和为零,而魏尔施特拉斯椭圆函数的所有极点留数均为零,所以这是必要的。

设η为戴德金η函数。则

雅可比Θ函数为一维热方程、于时间为零时符合周期边界条件之唯一解。 设 = 取实值,τ = 而取正值。则有

此解此下方程:

于 = 0时,Θ函数成为“狄拉克梳状函数”(Dirac comb)

其中δ为狄拉克δ函数,故可知此解是唯一的。因此,一般解可得自 = 0时的(周期)边界条件与Θ函数的卷积。

雅可比Θ函在海森堡群之一离散子群作用下不变。见海森堡群之Θ表示一文。

若为一元二次型,则有一关连的Θ函数

其中n为整数格。此Θ函数是模群(或某适当子群)上的权/2 模形式。在其富理埃级数

中,F() 称为此模形式之“表示数”(representation numbers)。

为一集对称方矩阵,其虚部为正定,一般称为“西格尔上半平面”(Siegel upper half-plane),它是上半复平面的高维推广。模群之维推广为辛群Sp(2n,Z): 当 = 1 时, Sp(2,Z) = SL(2,Z)。同余子群(congruence subgroup)的维推广为态射核 Ker { Sp ( 2 n , Z ) Sp ( 2 n , Z / k Z ) } {\displaystyle {\textrm {Ker}}\{{\textrm {Sp}}(2n,\mathbb {Z} )\rightarrow {\textrm {Sp}}(2n,\mathbb {Z} /k\mathbb {Z} )\}} 维复向量,上标为转置。然则雅可比Θ函数为其特例(设 = 1、 τ H {\displaystyle \tau \in \mathbb {H} } ;其中 H {\displaystyle \mathbb {H} } 为上半平面)。

C n × H n . {\displaystyle \mathbb {C} ^{n}\times \mathbb {H} _{n}.} 的紧致子集上,黎曼Θ函数绝对一致收敛。

函数方程为:

此方程成立于 a , b Z n {\displaystyle a,b\in \mathbb {Z} ^{n}} , z C n {\displaystyle z\in \mathbb {C} ^{n}} τ H n {\displaystyle \tau \in \mathbb {H} _{n}}

本条目含有来自PlanetMath《Integral representations of Jacobi theta functions》的内容,版权遵守知识共享协议:署名-相同方式共享协议。

相关

  • 保护土壤保护乃防止土壤因土地过度利用产生土壤侵蚀、降低土壤生产力、酸化、盐化或其他类型的土壤污染而造成土壤流失的一种保护措施。在一些未开发的国家中,火耕以及其他无法永
  • 亚硝胺亚硝胺、亚硝酸胺(Nitrosamine)是一类通式为R1N(–R2)–N=O的胺化合物,其大部分成员都属强致癌物。亚硝胺广泛应用于化妆品、杀虫剂与树脂的生产。其中N,N'-二亚硝基五亚甲基四
  • 三磷酸腺苷三磷酸腺苷(英语:adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化学中是一种核苷酸,作为细胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合
  • 塞舌尔华人塞舌尔华人,在1999年估计人口有1000人,是最小规模的非洲华人群体。第一个抵达塞舌尔的华人是在1886年从毛里求斯来的,直到1940年毛里求斯华人将他的亲戚从中国带到毛里求斯,经历
  • 蝶海猪鱼蝶海猪鱼,为辐鳍鱼纲鲈形目隆头鱼亚目隆头鱼科的其中一种,分布于中西太平洋区,从印尼苏门答腊岛至圣克鲁斯群岛海域,栖息深度1-4米,体长可达12公分,栖息在水浅有遮蔽物的礁石区海
  • 学研控股株式会社学研控股(日语:株式会社学研ホールディングス),是日本一家以教育书籍为业务中心的出版社,常被略称为学研(がっけん)。另有经营“学研教室”。前身为“株式会社学习研究社
  • 体验特质体验特质(,缩写),也称作“用户体验特质”,是对一个客户对供应商的体验的主观衡量。“体验”是从客户或者最终用户的视角看供应商或承办商的供应,提问“什么样的商品、服务和支持,你
  • 白尾尖镰嘴蜂鸟白尾尖镰嘴蜂鸟(学名:)在生物分类学上是蜂鸟科隐蜂鸟亚科中的一个种。分布于哥斯达黎加、厄瓜多尔西部以及秘鲁东北部。身体全长14厘米。
  • 冯培德冯培德(1941年4月7日-),广东恩平人,飞行器导航控制专家,中国工程院院士。1957年考入北京大学,1963年考入南京航空航天大学,1967年加入航空618所,1981年赴美做访问学者两年,1984年任618
  • 奈良大学奈良大学 奈良大学是一所位于日本奈良县奈良市的私立大学,有大约3700个学生。地址是奈良县奈良市山陵町1500。