Θ函数

✍ dations ◷ 2025-11-23 01:34:09 #Θ函数,椭圆函数,模形式,黎曼曲面

数学中,Θ函数是一种多复变(英语:Several complex variables)特殊函数。其应用包括阿贝尔簇(英语:Abelian variety)与模空间、二次形式、孤立子理论;其格拉斯曼代数推广亦出现于量子场论,尤其于超弦与D-膜理论。

Θ函数最常见于椭圆函数理论。相对于其“” 变量,Θ函数是拟周期函数(quasiperiodic function),具有“拟周期性”。在一般下降理论(英语:Descent (mathematics))中,Θ函数是来自线丛(英语:Line bundle)条件。

雅可比Θ函数取二变量 z {\displaystyle z\,} )。

若用变量 q = e π i τ {\displaystyle q=e^{\pi i\tau }\,} 取实值时尤为重要。各辅助Θ函数亦有类似之积公式:

雅可比Θ函数可用积分表示,如下:

黎曼常用关系式

以证黎曼ζ函数之函数方程。他写下等式:

而此积分于替换 s 1 s {\displaystyle s\to 1-s} ,而常数使 ( z ) {\displaystyle \wp (z)} = 0)常项为零,因为雅可比椭圆函数单位胞腔内两极点互为相反数,和为零,而魏尔施特拉斯椭圆函数的所有极点留数均为零,所以这是必要的。

设η为戴德金η函数。则

雅可比Θ函数为一维热方程、于时间为零时符合周期边界条件之唯一解。 设 = 取实值,τ = 而取正值。则有

此解此下方程:

于 = 0时,Θ函数成为“狄拉克梳状函数”(Dirac comb)

其中δ为狄拉克δ函数,故可知此解是唯一的。因此,一般解可得自 = 0时的(周期)边界条件与Θ函数的卷积。

雅可比Θ函在海森堡群之一离散子群作用下不变。见海森堡群之Θ表示一文。

若为一元二次型,则有一关连的Θ函数

其中n为整数格。此Θ函数是模群(或某适当子群)上的权/2 模形式。在其富理埃级数

中,F() 称为此模形式之“表示数”(representation numbers)。

为一集对称方矩阵,其虚部为正定,一般称为“西格尔上半平面”(Siegel upper half-plane),它是上半复平面的高维推广。模群之维推广为辛群Sp(2n,Z): 当 = 1 时, Sp(2,Z) = SL(2,Z)。同余子群(congruence subgroup)的维推广为态射核 Ker { Sp ( 2 n , Z ) Sp ( 2 n , Z / k Z ) } {\displaystyle {\textrm {Ker}}\{{\textrm {Sp}}(2n,\mathbb {Z} )\rightarrow {\textrm {Sp}}(2n,\mathbb {Z} /k\mathbb {Z} )\}} 维复向量,上标为转置。然则雅可比Θ函数为其特例(设 = 1、 τ H {\displaystyle \tau \in \mathbb {H} } ;其中 H {\displaystyle \mathbb {H} } 为上半平面)。

C n × H n . {\displaystyle \mathbb {C} ^{n}\times \mathbb {H} _{n}.} 的紧致子集上,黎曼Θ函数绝对一致收敛。

函数方程为:

此方程成立于 a , b Z n {\displaystyle a,b\in \mathbb {Z} ^{n}} , z C n {\displaystyle z\in \mathbb {C} ^{n}} τ H n {\displaystyle \tau \in \mathbb {H} _{n}}

本条目含有来自PlanetMath《Integral representations of Jacobi theta functions》的内容,版权遵守知识共享协议:署名-相同方式共享协议。

相关

  • 湘西土家族苗族自治州湘西土家族苗族自治州,简称湘西州,是中华人民共和国湖南省下辖的自治州,位于湖南省西北部。州境东北达张家界市,东南邻怀化市,西南界贵州省铜仁市,西毗重庆市,西北接湖北省恩施州。
  • 国家行政学院 (法国)国家行政学院(École nationale d'administration,缩写:ENA),是法国著名的大学校之一,于1945年戴高乐政府时期创立,其作用为训练高级文官或者行政法院法官,每年只招收百多人,校友(称“
  • 国内生产总值过千亿美元的一级行政区列表本条目所列,为按国际汇率折算经济总量(GDP)超过1千亿美元各国一级行政区列表。所列数据源自各国官方统计机构,绝大部分数据为初步数据,往后有修订。为便于对比,所列GDP均折算为美
  • 斯蒂芬·朗斯蒂芬·朗(英语:Stephen Lang,1952年7月11日-),是美国的一名男演员和剧作家。他发迹于百老汇的剧院,但却因其在《战役风云》中饰演的石墙杰克逊和在《阿凡达》中饰演的夸里奇上校
  • PHPPHP(全称:PHP:Hypertext Preprocessor,即“PHP:超文本预处理器”)是一种开源的通用计算机脚本语言,尤其适用于网络开发并可嵌入HTML中使用。PHP的语法借鉴吸收C语言、Java和Perl等
  • 马耳他女王马耳他女王(马耳他语:Reġina ta' Malta),是马耳他在1964年9月21日到1974年12月13日的国家元首头衔。马耳他女王职衔现已废除,国家元首一职改由马耳他总统行使。1964年马耳他从英
  • 八条宫稳仁亲王八条宫稳仁亲王(はちじょうのみや やすひとしんのう、宽永20年四月廿九(1643年6月15日) - 宽文5年十月初三(1665年11月9日)),为日本江户时代前期的皇族,八条宫(桂宫)第3代,后水尾天皇第
  • 全拼全拼是汉语拼音输入法的一种编码方案。通过全拼输入汉字时需要输入汉字的全部拼音(包含声母和韵母,通常不包括音调),击键次数比双拼、简拼多,因此输入效率较低,主要是电脑初学者使
  • 格拉斯瓦尔德湖坐标:48°25′33″N 8°15′43″E / 48.42583°N 8.26194°E / 48.42583; 8.26194格拉斯瓦尔德湖(德语:Glaswaldsee),是德国的湖泊,位于该国西南部,由巴登-符腾堡州负责管辖,处于巴
  • 樊王家 (万历丁未进士)樊王家(?-?),字孟泰,广东广州府东莞县人,明朝政治人物。万历三十五年(1607年)丁未科进士,授江西广昌县知县,擢工部主事,历仕广西提学副使。