Θ函数

✍ dations ◷ 2025-11-27 00:02:05 #Θ函数,椭圆函数,模形式,黎曼曲面

数学中,Θ函数是一种多复变(英语:Several complex variables)特殊函数。其应用包括阿贝尔簇(英语:Abelian variety)与模空间、二次形式、孤立子理论;其格拉斯曼代数推广亦出现于量子场论,尤其于超弦与D-膜理论。

Θ函数最常见于椭圆函数理论。相对于其“” 变量,Θ函数是拟周期函数(quasiperiodic function),具有“拟周期性”。在一般下降理论(英语:Descent (mathematics))中,Θ函数是来自线丛(英语:Line bundle)条件。

雅可比Θ函数取二变量 z {\displaystyle z\,} )。

若用变量 q = e π i τ {\displaystyle q=e^{\pi i\tau }\,} 取实值时尤为重要。各辅助Θ函数亦有类似之积公式:

雅可比Θ函数可用积分表示,如下:

黎曼常用关系式

以证黎曼ζ函数之函数方程。他写下等式:

而此积分于替换 s 1 s {\displaystyle s\to 1-s} ,而常数使 ( z ) {\displaystyle \wp (z)} = 0)常项为零,因为雅可比椭圆函数单位胞腔内两极点互为相反数,和为零,而魏尔施特拉斯椭圆函数的所有极点留数均为零,所以这是必要的。

设η为戴德金η函数。则

雅可比Θ函数为一维热方程、于时间为零时符合周期边界条件之唯一解。 设 = 取实值,τ = 而取正值。则有

此解此下方程:

于 = 0时,Θ函数成为“狄拉克梳状函数”(Dirac comb)

其中δ为狄拉克δ函数,故可知此解是唯一的。因此,一般解可得自 = 0时的(周期)边界条件与Θ函数的卷积。

雅可比Θ函在海森堡群之一离散子群作用下不变。见海森堡群之Θ表示一文。

若为一元二次型,则有一关连的Θ函数

其中n为整数格。此Θ函数是模群(或某适当子群)上的权/2 模形式。在其富理埃级数

中,F() 称为此模形式之“表示数”(representation numbers)。

为一集对称方矩阵,其虚部为正定,一般称为“西格尔上半平面”(Siegel upper half-plane),它是上半复平面的高维推广。模群之维推广为辛群Sp(2n,Z): 当 = 1 时, Sp(2,Z) = SL(2,Z)。同余子群(congruence subgroup)的维推广为态射核 Ker { Sp ( 2 n , Z ) Sp ( 2 n , Z / k Z ) } {\displaystyle {\textrm {Ker}}\{{\textrm {Sp}}(2n,\mathbb {Z} )\rightarrow {\textrm {Sp}}(2n,\mathbb {Z} /k\mathbb {Z} )\}} 维复向量,上标为转置。然则雅可比Θ函数为其特例(设 = 1、 τ H {\displaystyle \tau \in \mathbb {H} } ;其中 H {\displaystyle \mathbb {H} } 为上半平面)。

C n × H n . {\displaystyle \mathbb {C} ^{n}\times \mathbb {H} _{n}.} 的紧致子集上,黎曼Θ函数绝对一致收敛。

函数方程为:

此方程成立于 a , b Z n {\displaystyle a,b\in \mathbb {Z} ^{n}} , z C n {\displaystyle z\in \mathbb {C} ^{n}} τ H n {\displaystyle \tau \in \mathbb {H} _{n}}

本条目含有来自PlanetMath《Integral representations of Jacobi theta functions》的内容,版权遵守知识共享协议:署名-相同方式共享协议。

相关

  • 诗经《诗经》是中国最早的诗歌总集,收录自西周初年至春秋中叶(约前11世纪-前6世纪)的诗歌305篇(除此之外还有6篇有题目无内容,即有目无辞,称为笙诗六篇,题目分别是南陔、白华、华黍、由
  • 两次世界大战世界大战,指涉及到世界上大多数强大和人口庞大国家、规模最大的战争。世界大战可横跨几个大洲,并持续多年。这个用词通常应用于20世纪二个规模空前的全球冲突:第一次世界大战(19
  • 好兄弟好兄弟可以指:
  • 装甲类装甲类(学名:Thyreophora)或称覆盾甲龙类、装甲总科。名称源自希腊文中的θυρεος(大型盾牌)与φορεω(我带着),意思是“我带着护盾”。它们是鸟臀目恐龙的其中一类,是有拥有
  • 菲利普美术馆菲利普美术馆(英语:The Phillips Collection)是位于美国华盛顿的一家美术馆。飞利浦收藏馆开幕于1921年,是美国第一家现代美术馆 ,创办人是美术评论家Duncan Phillips。菲利普
  • 四硝酸根合硼酸盐四硝酸根合硼酸盐是一类无机化合物,化学式为−。它可以和较大的阳离子形成盐类,如四硝酸根合硼酸四甲基铵或四硝酸根合硼酸四乙基铵等。这个离子最初由C. R. Guibert和M. D. M
  • 丹尼斯·奎德丹尼斯·威廉·奎德(英语:Dennis William Quaid,1954年4月9日-),是美国一位知名男演员,出生于德州的休士顿。他的哥哥兰迪·奎德(Randy Quaid)也是一名演员。奎德曾就读休士顿大学,但
  • 甘柏林甘柏林(1935年-),男,湖南长沙人,中华人民共和国盲人二胡演奏家,中国残疾人联合会副主席,第九、十届全国政协委员。
  • 记,中国古代文体的一种。以记叙为主,议论,抒情为辅,可记人,可记事,可记物。
  • 李怀达李怀达(?-?),陇西狄道(今甘肃省临洮县)人,凉武昭王李暠的孙子,西凉骁骑将军、祈连酒泉晋昌三郡太守李翻的儿子。太平真君三年(442年)十二月,李怀达在兄长李宝的命令下与侄子李承上表造访