Θ函数

✍ dations ◷ 2025-09-18 05:50:25 #Θ函数,椭圆函数,模形式,黎曼曲面

数学中,Θ函数是一种多复变(英语:Several complex variables)特殊函数。其应用包括阿贝尔簇(英语:Abelian variety)与模空间、二次形式、孤立子理论;其格拉斯曼代数推广亦出现于量子场论,尤其于超弦与D-膜理论。

Θ函数最常见于椭圆函数理论。相对于其“” 变量,Θ函数是拟周期函数(quasiperiodic function),具有“拟周期性”。在一般下降理论(英语:Descent (mathematics))中,Θ函数是来自线丛(英语:Line bundle)条件。

雅可比Θ函数取二变量 z {\displaystyle z\,} )。

若用变量 q = e π i τ {\displaystyle q=e^{\pi i\tau }\,} 取实值时尤为重要。各辅助Θ函数亦有类似之积公式:

雅可比Θ函数可用积分表示,如下:

黎曼常用关系式

以证黎曼ζ函数之函数方程。他写下等式:

而此积分于替换 s 1 s {\displaystyle s\to 1-s} ,而常数使 ( z ) {\displaystyle \wp (z)} = 0)常项为零,因为雅可比椭圆函数单位胞腔内两极点互为相反数,和为零,而魏尔施特拉斯椭圆函数的所有极点留数均为零,所以这是必要的。

设η为戴德金η函数。则

雅可比Θ函数为一维热方程、于时间为零时符合周期边界条件之唯一解。 设 = 取实值,τ = 而取正值。则有

此解此下方程:

于 = 0时,Θ函数成为“狄拉克梳状函数”(Dirac comb)

其中δ为狄拉克δ函数,故可知此解是唯一的。因此,一般解可得自 = 0时的(周期)边界条件与Θ函数的卷积。

雅可比Θ函在海森堡群之一离散子群作用下不变。见海森堡群之Θ表示一文。

若为一元二次型,则有一关连的Θ函数

其中n为整数格。此Θ函数是模群(或某适当子群)上的权/2 模形式。在其富理埃级数

中,F() 称为此模形式之“表示数”(representation numbers)。

为一集对称方矩阵,其虚部为正定,一般称为“西格尔上半平面”(Siegel upper half-plane),它是上半复平面的高维推广。模群之维推广为辛群Sp(2n,Z): 当 = 1 时, Sp(2,Z) = SL(2,Z)。同余子群(congruence subgroup)的维推广为态射核 Ker { Sp ( 2 n , Z ) Sp ( 2 n , Z / k Z ) } {\displaystyle {\textrm {Ker}}\{{\textrm {Sp}}(2n,\mathbb {Z} )\rightarrow {\textrm {Sp}}(2n,\mathbb {Z} /k\mathbb {Z} )\}} 维复向量,上标为转置。然则雅可比Θ函数为其特例(设 = 1、 τ H {\displaystyle \tau \in \mathbb {H} } ;其中 H {\displaystyle \mathbb {H} } 为上半平面)。

C n × H n . {\displaystyle \mathbb {C} ^{n}\times \mathbb {H} _{n}.} 的紧致子集上,黎曼Θ函数绝对一致收敛。

函数方程为:

此方程成立于 a , b Z n {\displaystyle a,b\in \mathbb {Z} ^{n}} , z C n {\displaystyle z\in \mathbb {C} ^{n}} τ H n {\displaystyle \tau \in \mathbb {H} _{n}}

本条目含有来自PlanetMath《Integral representations of Jacobi theta functions》的内容,版权遵守知识共享协议:署名-相同方式共享协议。

相关

  • 硅藻见内文硅藻纲(学名:Bacillariophyceae)是真核藻类的一个主要类群,同时也是最常见的一种浮游藻类。多数为单细胞生物,尽管有些种类可以丝状或带状群体(如Fragilaria)、扇状群体(如Mer
  • .am.am为亚美尼亚国家及地区顶级域(ccTLD)的域名。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at .au .aw .ax .az  B .ba .bb .bd .be .bf .bg .bh .bi .bj .bm .
  • 吉姆·奈格利奇吉姆·奈格利奇(Jim Negrych,台译:耐克J.N,1985年3月2日-),为美国职业棒球选手之一。现效力于中华职棒中信兄弟,登录名字为耐克。守备位置为二垒手。 2014年5月7日正式加盟中信兄弟,
  • 爱玛客爱玛客(Aramark Corporation)是一家美国管理服务公司,为各行业提供食品服务,总部位于费城。2018年时为财富美国500强第27大公司。其前身是达沃和亨利·戴维斯兄弟在1936年成立的
  • 巴克曼巴克曼(英语:Buckman)是一个美国城市,位于明尼苏达州莫里森县。根据2010年的人口普查,当地人口为270人。根据美国人口普查局,该城市的总面积为1.02平方英里(2.64平方千米)。
  • 可定义数 N ⊆ Z ⊆ Q ⊆ R ⊆
  • 维基竞赛维基竞赛(英语:Wikiracing)是一个运用网络百科全书—维基百科进行的竞赛游戏,玩家依靠点击维基百科的内部链接从给定的起点条目移动到终点。此外也有着能够进行维基竞赛的外部网
  • 台湾剧集列表 (2018年)←2017年 - 2018年 - 2019年→《2018年台湾剧集列表》是收录于公元2018年(民国107年)的各大电视台之自制电视剧与其他国家合拍电视剧,不收录所播映的外购剧;另外,如果有电视台知
  • 超人III《超人III》(英语:),是一部于1983年上映的美国超级英雄嘲讽电影,导演为理查德·莱斯特,主演克里斯托弗·里夫。其是超人系列电影的第三部,基于其连续上演很长时间的DC漫画超级英雄
  • 黄希范黄希范,湖广行省黄州府麻城县(今湖北省麻城市)人,明朝政治人物。洪武年间,其任徽州府知府。建文年间,担任工部侍郎。燕王朱棣即位后,命逮捕黄希范与程通,并一并处死。