在统计学中,巴苏定理(Basu's Theorem)指出任何有界完全的充分统计量与任何辅助统计量独立。 这是Debabrata Basu于1955年发现的结论。
设1, 2,..., 是独立同分布的正态分布随机变量,其中方差可以证明样本均值
是充分完全统计量,并且样本方差
是辅助统计量,即其分布并不依赖于
因此,巴苏定理指出二者独立。
尽管上述证明是借助方差已知均值未知的正态分布模型完成的,这一结论并不只在该情况下成立。实际上,无论方差或均值已知与否,正态分布的样本均值和样本方差都是独立的。更进一步,正态分布是唯一具有这一性质的分布。