等腰三角形

✍ dations ◷ 2025-04-02 08:30:18 #等腰三角形
60° (底角和顶角相等时) 2 α + γ = 180 ∘ {displaystyle textstyle 2alpha +gamma =180^{circ }}在几何学中,等腰三角形(isosceles triangle)是指至少有两边等长或相等的三角形,因此会造成有2个角相等。相等的两个边称等腰三角形的腰,另一边称为底边,相等的两个角称为等腰三角形的底角,其余的角叫做顶角等腰三角形的重心、和垂心都位于顶点向底边的垂线,可以把等腰三角形分成两个全等的直角三角形。等边三角形是底边和腰等长的等腰三角形,是等腰三角形的一个特殊形式。若等腰三角形的顶角为直角,称为等腰直角三角形。等腰三角形在英文中称为isosceles,来自希腊文,意思是“等长的脚”等腰三角形具有下列性质:P.204c 2 = 2 a 2 ( 1 − cos ⁡ ( γ ) ) {displaystyle c^{2}=2a^{2}(1-cos(gamma ))}若一三角形的二边相等,则二边的对角相等,此定理列在欧几里德的《几何原本》中,称为驴桥定理,也是等腰三角形定理。驴桥定理是在几何原本的前面出现的较困难命题,是数学能力的一个门槛,无法理解此一命题的人可能也无法处理后面更难的命题。驴桥定理的逆定理是若一三角形的二角相等,则二角的对边相等。若二等腰三角形,其腰相等,底边也相等,即可以用SSS全等证明二个等腰三角形全等,而三角形的角可以用余弦定理求得。等腰三角形的顶角 γ {displaystyle gamma } 和底角 α {displaystyle alpha } 有以下的关系:已知其中一个就可以知道另一个,若二等腰三角形的顶角相等或底角相等,即可以用AAA相似证明二个等腰三角形全等,各边的关系可以用正弦定理求得。等腰三角形为轴对称,其对称轴和底边的高、中垂线、中线及顶角的角平分线重合(三线合一)。等腰三角形的内心、外心、重心、垂心及顶点所对旁心五心共线,都在对称轴上。

相关

  • 建筑美国对建筑学的贡献之一为摩天大楼。那些大胆直线成为了它资本家能量的标志。新建筑技术和电梯的发明带来新的可能性。在1884年第一座摩天大楼矗立在伊利诺伊州芝加哥市内。
  • 性感染疾病性感染疾病(英语:Sexually transmitted infections, STI),又称性病(英语:Venereal Disease, VD)或花柳病,描述因性行为(指阴道性行为、肛交和口交)而传播的疾病。大多数的性感染疾病一
  • 埃雷特里亚埃雷特里亚(英语: Eretria /əˈriːtriə/; Greek: Ερέτρια; 语意: 桨手的城市 "city of the rowers" )是希腊艾维亚岛上一个城镇,面向艾维亚海峡中的阿提卡的海湾。埃
  • 易性癖性别不安(英语:gender dysphoria),又称性别焦虑、性别不一致,旧称性别认同障碍(英语:gender identity disorder)或易性症,是一个人因为出生时的性别指定而遭受的痛苦。在这种情况下,性
  • 精算师精算师(英语:Actuary,由《美国传统词典》释义,在拉丁语中为“secretary of accounts”之意)是处理风险及不确定性的金融风险的商业性职业。精算师专注于其中的复杂性,数学和机制,因
  • Excavata古虫界(学名:Excavata)是单细胞生物的一个主要超级群组,属于真核生物域,由汤玛斯·卡弗利尔-史密斯于2002年引入的一个新的支序亲缘学分类。古虫界包含了许多自由生存或共生的原
  • 藓类植物藓纲(学名:Bryopsida)在生物分类学上是苔藓植物门(Bryophyta)中的一个纲。它是苔藓植物门中最大的一纲,包含95%的全部的藓纲物种。它约有15,000种。中国约有500余种。本纲可分为三
  • 吠舍吠舍(梵文:वैश्य Vaiśya)瓦尔那的一种,是古印度社会中的普通劳动者,也就是雅利安人的中下阶层,包括农民、畜牧者和商人,他们必须向国家缴纳赋税。
  • 空位期空位期(空位时代,英语:Interregnum)是政府、组织或社会秩序中断的时期。例如指一个君主离任和其继承人继任之间的时期。除去议会制国家的悬峙国会以外,此名词(interregnum)在英语中
  • 张仁和张仁和(1936年11月5日-),重庆人,中国物理学家、声学家。1936年出生在重庆,1958年毕业于北京大学物理系。1991年当选为中国科学院学部委员(院士)。 中国科学院声学研究所研究员,声场