等腰三角形

✍ dations ◷ 2025-08-25 09:43:37 #等腰三角形
60° (底角和顶角相等时) 2 α + γ = 180 ∘ {displaystyle textstyle 2alpha +gamma =180^{circ }}在几何学中,等腰三角形(isosceles triangle)是指至少有两边等长或相等的三角形,因此会造成有2个角相等。相等的两个边称等腰三角形的腰,另一边称为底边,相等的两个角称为等腰三角形的底角,其余的角叫做顶角等腰三角形的重心、和垂心都位于顶点向底边的垂线,可以把等腰三角形分成两个全等的直角三角形。等边三角形是底边和腰等长的等腰三角形,是等腰三角形的一个特殊形式。若等腰三角形的顶角为直角,称为等腰直角三角形。等腰三角形在英文中称为isosceles,来自希腊文,意思是“等长的脚”等腰三角形具有下列性质:P.204c 2 = 2 a 2 ( 1 − cos ⁡ ( γ ) ) {displaystyle c^{2}=2a^{2}(1-cos(gamma ))}若一三角形的二边相等,则二边的对角相等,此定理列在欧几里德的《几何原本》中,称为驴桥定理,也是等腰三角形定理。驴桥定理是在几何原本的前面出现的较困难命题,是数学能力的一个门槛,无法理解此一命题的人可能也无法处理后面更难的命题。驴桥定理的逆定理是若一三角形的二角相等,则二角的对边相等。若二等腰三角形,其腰相等,底边也相等,即可以用SSS全等证明二个等腰三角形全等,而三角形的角可以用余弦定理求得。等腰三角形的顶角 γ {displaystyle gamma } 和底角 α {displaystyle alpha } 有以下的关系:已知其中一个就可以知道另一个,若二等腰三角形的顶角相等或底角相等,即可以用AAA相似证明二个等腰三角形全等,各边的关系可以用正弦定理求得。等腰三角形为轴对称,其对称轴和底边的高、中垂线、中线及顶角的角平分线重合(三线合一)。等腰三角形的内心、外心、重心、垂心及顶点所对旁心五心共线,都在对称轴上。

相关

  • DNA序列核酸序列(英语:Nucleic acid sequence,亦称为核酸的一级结构)使用一串字母表示的真实的或者假设的携带基因信息的DNA分子的一级结构。每个字母代表一种核碱基,两个碱基形成一个碱
  • 生物性危害第四级生物性危害(英文:Biological hazard, Biohazard),又称为“生物危害”,指的是会对人类及动物有危害的生物或生物性物质。这些物质包括但不限于动物、植物、微生物、病毒及含有病原
  • 宏观经济学宏观经济学(英语:Macroeconomics,来自希腊语前缀makro-意为“大”+经济学),是指用国民收入、经济整体的投资和消费等总体性的统计概念来分析经济运行规律的一个经济学领域。宏观
  • 三联疫苗三联疫苗可以指:
  • 字母的历史字母的历史从古埃及开始。公元前27世纪,古埃及人发展出一套含22个单音的象形文字来表达他们语言的子音,第23个字元推测是用来表示字首和字尾的母音。这些字元成为意音文字的发
  • 思想家思想家,是指对各层面的学术都有广泛研究或其思想足以建立出一个思想体系的人(如, 中国:老子、孔子、孟子、荀子、王充、王守仁、李贽、朱熹、顾炎武、龚自珍、魏源、康有为、鲁
  • 意大利文化意大利文化是指意大利半岛与周围地区形成的文化。从古代到16世纪为止,意大利都是西方文化的核心,也是伊特拉斯坎文明、古罗马、罗马天主教、人文主义和文艺复兴运动的起源。在
  • 年轻太阳黯淡佯谬年轻太阳黯淡佯谬或年轻太阳黯淡问题是描述水在早期的地球历史上出现观测和天文物理学的预期之间明显矛盾的状况。当时,太阳输出的能量仅是现代的70%。这一问题在1972年被天
  • 灵长类动物学动物学人类学 · 人与动物关系学 蜜蜂学 · 节肢动物学 医学节肢动物学 · 鲸类学 贝类学 · 昆虫学 动物行为学 · 蠕虫学 两栖爬行动物学 · 鱼类学 软体动物学 · 哺乳动
  • 细胞自动机细胞自动机(英语:Cellular automaton),又称格状自动机、元胞自动机,是一种离散模型,在可计算性理论、数学及理论生物学都有相关研究。它是由无限个有规律、坚硬的方格组成,每格均处