0.999…

✍ dations ◷ 2024-12-23 00:50:49 #一,数学悖论,实分析,实数,数字,含有数学证明的条目

在数学的完备实数系中,循环小数0.999…,也可写成 0. 9 ¯ {\displaystyle 0.{\overline {9}}} ,则10 − = 9,也就是9 = 9。等式两端除以9,便得证: = 1。用一系列方程来表示,就是

以上两个证明中的位数操作的正确性,并不需要盲目相信,也无需视为公理;它是从小数和所表示的数之间的基本关系得出的。这个关系,可以用几个等价的方法来表示,已经规定了0.999…和1都表示相同的实数。

由于0.999…的问题并不影响数学的正式发展,因此我们可以暂缓进行研究,直到证明了实分析的基本定理为止。其中一个要求,是要刻划所有能表示成小数的实数的特征,由一个可选择的符号、构成整数部分的有限个数字、一个小数点,以及构成小数部分的一系列数字组成。为了讨论0.999…的目的,我们可以把整数部分概括为0,并可以忽略负号,这样小数展开式就具有如下的形式:

小数部分与整数部分不一样,整数部分只能有有限个数字,而小数部分则可以有无穷多个数字。这一点是至关重要的。这是一个进位制,所以500中的5是50中的5的十倍,而0.05中的5则是0.5中的5的十分之一。

也许小数展开式最常见的发展,是把它们定义为无穷级数的和。一般地:

对于0.999…来说,我们可以使用等比级数的收敛定理:

由于0.999…是公比为 r = 1 10 {\displaystyle r=\textstyle {\frac {1}{10}}} 012,…)来说,如果当增大时,距离| − |变得任意地小,那么这个数列就具有极限。0.999… = 1的表述,可以用极限的概念来阐释和证明:

最后一个步骤—lim 1/10 = 0—通常由实数拥有阿基米德性质这一原理来证明。这个以极限为基础的对0.999…的看法,有时会用比较引人注意但不太精确的话语来表达。例如,在1846年的美国教科书《大学算术》(《The University Arithmetic》)中有这么一句:“0.999+,到无穷远处等于1,这是因为每加上一个9,都会使它的值更加接近于1”(.999 +, continued to infinity = 1, because every annexation of a 9 brings the value closer to 1);在1895年的美国教科书《Arithmetic for Schools》(《学校算术》)中也有:“…如果有非常多的9,那么1和0.99999…的差就小得难以想像了”(“…when a large number of 9s is taken, the difference between 1 and .99999…becomes inconceivably small”)。这种启发式的教学法,常常被学生们误解为0.999…本身就小于1。

以上的级数定义,是一个用小数展开式来定义实数的简单的方法。还有一种补充的方法,是相反的过程:对于一个给定的实数,定义一个相关的小数展开式。

如果知道一个实数位于闭区间内(也就是说,这个实数大于或等于0,而小于或等于10),我们就可以想像把这个区间分成十个部分,只在终点处相重叠:、、,依此类推,直到。实数一定是属于这十个区间的一个;如果它属于,我们就把数字“2”记录下来,并把这个区间再细分成十个子区间:、、…、、。把这个过程一直继续下去,我们便得到了一个无穷的区间套序列,由无穷个数字0123、…来标示,并记

在这种形式中,1 = 1.000…而且1 = 0.999…的事实,反映了1既位于,又位于,所以我们在寻找它的数字时,可以选择任意一个子区间。为了保证这种记法没有滥用“=”号,我们需要一种办法来为每一个小数重新构造一个唯一的实数。这可以用极限来实现,但是还有其它的方法。

一个简单的选择,是区间套定理,它保证只要给出了一个长度趋近于零的闭区间套序列,那么这些区间套的交集就正好是一个实数。这样,0.123…便定义为包含在所有的区间、,依此类推的唯一的实数。而0.999…就是位于所有的区间、、、(对于任意有限个9)的唯一的实数。由于1是所有这些区间的公共元素,因此0.999… = 1。

区间套定理通常是建立在一个更加基本的实数特征之上的:最小上界的存在。为了直接利用这些事物,我们可以把0.123…定义为集合{00.10.12,…}的最小上界。然后我们就可以证明,这种定义(或区间套的定义)与划分的过程是一致的,再一次证明了0.999… = 1。汤姆·阿波斯托尔得出结论:

有些方法用公理集合论明确把实数定义为一定的建立在有理数上的结构。自然数──0、1、2、3,依此类推──从零开始并继续增加,这样每一个自然数都有一个后继者。我们可以把自然数的概念延伸到负数,得出所有的整数,并可以进一步延伸到比例,得出所有的有理数。这些数系伴随着加法、减法、乘法和除法的算术。更加微妙地,它们还包括排序,这样一个数就可以与另一个进行比较,并发现是大于、小于,还是等于。

从有理数到实数的一步,是一个很大的延伸。至少有两种常见的方法来达到这一步,它们都在1872年出版:戴德金分割,以及柯西序列。直接用到这些结构的0.999… = 1的证明,现在已经无法在实分析的教科书中找到了;最近几个年代的趋势,是使用公理化的分析。即使提供了这样的一个结构,它也通常被用来证明实数的公理,从而为以上的证明提供证据。然而,有些作者表达了从一个结构开始才是逻辑上更恰当的想法,这样得出的证明就更加完备了。

在戴德金分割的方法中,每一个实数定义为所有小于的有理数所组成的无穷集合。比如说,实数1就是所有小于1的有理数的集合。每一个正的小数展开式很容易决定了一个戴德金分割:小于某个展开阶段的有理数的集合。所以实数0.999…是有理数的集合,使得 < 0,或 < 0.9,或 < 0.99,或小于其它具有 1 ( 1 10 ) n {\displaystyle {\begin{smallmatrix}1-{\big (}{\tfrac {1}{10}}{\big )}^{n}\end{smallmatrix}}} 和之间的距离定义为绝对值| − |,其中绝对值||定义为和−的最大值,因此总是非负的。这样实数便被定义为关于这个距离的具有柯西序列性质的有理数序列。也就是说,每一个实数都是一个柯西收敛的数列(012,…)。这是一个从自然数到有理数的映射,使得对于任何正有理数δ,总存在一个,使得对于所有的、 > ,都有|| ≤ δ。(两项之间的距离变得比任何正的有理数都要小。)

如果()和()是两个柯西数列,那么如果数列()有极限0,这两个数列便定义为相等的。把小数0.123…拆开来,便得到了一个有理数序列,它是柯西序列;这个序列对应的实数被定义为这个小数的值。所以,在这种形式中,我们的任务就是要证明,有理数序列

有极限0。对于 = 0、1、2、…,考虑数列的第项,我们需要证明

这个极限是众所周知的;一个可能的证明,是在数列的极限的定义中,对于ε = / > 0,我们可以取 = 。所以,这又一次证明了0.999… = 1。

把实数定义为柯西序列,首先由爱德华·海涅和格奥尔格·康托尔独立发表,也是在1872年。以上的小数展开式的方法,包括0.999… = 1的证明,则主要是得自格利菲斯(Griffiths)和希尔顿(Hilton)在1970年的作品《一本经典数学的综合教科书:一个当代的阐释》()。这本书是特别为了以当代的眼光回顾一些熟悉的数学概念而作的。

0.999… = 1的证明,立刻可以进行两种推广。首先,对于每一个非零的有限小数(也就是说,从某一位开始全是零),都存在另外一个与其相等的数,从某一位开始全是9。例如,0.24999…等于0.25,就像我们考虑的特殊情况。这些数正好是十进分数,而且是稠密的。

其次,一个类似的定理可以应用到任何一个底数或进位制。例如,在二进制中,0.111…等于1;而在三进制中,0.222…等于1。实分析的教科书很有可能略过0.999…的特殊情况,而从一开始就介绍这两种推广的一种或两种。

1的其它表示法也出现在非整数进位制中。例如,在黄金进制中,两个标准的表示法就是1.000…和0.101010…,此外还有无穷多种含有相邻的1的表示法,如0.11,0.1011,0.101011等等。一般地,对于几乎所有的1和2之间的,在进制中都有无穷多种1的展开式。而另一方面,依然存在不可数个(包括所有大于1的自然数),使得在进制中只有一种1的展开式,除了显然的1.000…。这个结果首先由保罗·埃尔德什、Miklos Horváth和István Joó在大约1990年获得。1998年,Vilmos Komornik和Paola Loreti确定了具有这种性质的最小的进位制──Komornik-Loreti常数 = 1.787231650…。在这个进位制中,1 = 0.11010011001011010010110011010011…;其数字由图厄-摩斯数列给出,不是循环小数。

一个更加深远的推广,提到了最一般的进位制。在这些进位制中,一个数也有多种表示法,在某种意义上来说难度甚至更大。例如:

Marko Petkovšek证明了这种歧义是使用进位制的必然结果:对于任何一个把所有实数命名的系统,总有无穷多个实数有多种表示法,而这些实数所组成的集合又是稠密的。他把这个证明称为“一个基本点集拓扑学的指导性的练习”:它包含了把各位数的集合视为斯通空间,并注意到它们的实数表示法可以由连续函数给出。

0.999…的其中一个应用,出现在基本数论中。1802年,H·古得温出版了一份观察资料,描述了分母为一定的素数的分数的小数展开式中9的出现。例子包括:

E·米迪在1836年证明了关于这类分数的一个一般的结果,现在称为米迪定理。当初出版时没有写得很清楚,我们也不知道他的证明是不是直接提到了0.999…,但至少有一个W·G·莱维特的现代证明是这样的。如果我们可以证明,一个具有形式0.123…的小数是正整数,那么它就一定是0.999…,这也就是定理中9的来源。在这个方向上继续做研究,就可以得出诸如最大公因子、同余、费马素数、群元素的阶,以及二次互反律等概念。

回到实分析的主题上,三进制中的类似等式0.222… = 1在刻划康托尔集合──一个最简单的碎形的特征中,扮演了一个十分重要的角色:

小数中的第位反映了在第个阶段时点的位置。例如,点²⁄3可以如常地表示为0.2或0.2000…,这是因为它位于第一个删除部分的右面,以及以后所有的删除部分的左面。点1⁄3则不表示为0.1,而表示为0.0222…,这是因为它位于第一个删除部分的左面,以及以后所有的删除部分的右面。

重复的9还出现在另外一个康托尔的研究成果中。在应用他在1891年发表的对角线论证法来证明单位区间的不可数性时,必须要考虑到这种因素。这种证明需要根据小数展开式来断言两个实数是不同的,所以我们需要避免诸如0.2和0.1999…之类的数对。一个简单的方法把所有的实数表示为无限小数;相反的方法便排除了重复的9的可能性。一个可能更加接近于康托尔原先的证明的变体,实际上使用了二进制,把三进制展开式转换为二进制展开式,我们也可以证明康托尔集合的不可数性。

许多学习数学的学生往往怀疑、难以接受0.999… = 1的等式,其原因有很多,从根本不相同的外观,到对数列极限概念的深度疑虑,乃至对无限(无穷)的本性的异议,以及不少对数学错误的观念等背后的因素,从而造成了这种混淆;

这些想法在标准实数系(指具有完备性的)中都是错误的,但在其它数系中则有可能是正确的(要求相应数系不具备阿基米德性质,因为阿基米德性质要求数系中没有非零无穷小)。这些系统要么是为一般的数学用途而发明,要么就是作为指导性的反例,使人们更好地理解0.999…。

许多这些解释都是大卫·塔尔教授发现的,他研究了造成学生们误解的教导方法的特征。他访问了他的学生以决定为什么大多数人在一开始都拒绝接受该等式,发现“学生们仍然继续把0.999…视为一个越来越接近1的数列,而不是一个定值,因为‘你没有指定它有多少位’或‘在所有小于1的小数中,它是最大的数。’”

在所有初等的证明中,用0.333… = 1⁄3乘以3表面上是使学生们迫不得已接受0.999… = 1的一个成功的策略。但是,面对着对第一个等式的相信以及对第二个等式的怀疑,有些学生要么就开始怀疑第一个等式,要么干脆就感到灰心丧气了。同时也还有否认0.999…=1的学生指出1/3 比0.333…大一点(因为1/3是除不完的),所以推法“不成立”。更加复杂的方法,也不是十分有效的;有些学生完全可以应用严格的定义,但当他们被一个高等数学的结果,包括0.999…所震惊时,依然退回到直觉的形象上去了。例如,有一个学习实分析的学生,能够用最小上界的定义来证明0.333… = 1⁄3,但仍然坚称0.999…< 1,基于他早前对长除法的理解。其他学生也能够证明1⁄3 = 0.333…,但是,面对着以上的分数证明,仍然坚称“逻辑”能代替数学运算。

约瑟·马祖尔讲了一个故事:有一个十分聪明的学习微积分的学生,他“对我在课堂上讲的几乎所有内容都要提出一番异议,但对他的计算器深信不疑”。他相信,九个数字就是学习数学所需要的一切,包括计算23的平方根。这位学生对9.99… = 10的极限证法感到别扭,称其为“一个难以想像的无限增长过程”。

作为埃德·杜宾斯基的数学学习的“APOS理论”的一部分,杜宾斯基和他的合作者在2005年提出:任何一个学生,只要把0.999…设想为一个有限的、不确定的数串,与1的差是无穷小,那么他就“还没有对无限小数形成一个完整的过程概念”。其他对0.999…有了完整的过程概念的学生,仍不一定能把这个过程“概括”成一个“对象概念”,就像他们对1的对象概念那样,所以仍然觉得0.999…和1是不一致的。杜宾斯基还把这种概括的能力与把1⁄3视为一个独立的数,以及与把实数的集合视为一个整体联系起来。

随着互联网的崛起,关于0.999…的讨论已经冲出了教室,并走向了新闻组和信息版,包括那些名义上几乎与数学无关的信息版。在新闻组sci.math中,辩论0.999…是一项“受欢迎的运动”,也是常见问答集之一。常见问答集涵盖了1⁄3、乘以10、还有极限的证明,也间接地提到了柯西序列。

一个2003年版的报纸专栏《真实讯息(英语:The Straight Dope)》通过1⁄3和极限讨论了0.999…,并谈到了误解:

《真实讯息》在自己的信息版引用了另外一个不明的信息版中的讨论,那个信息版“大部分是关于电子游戏的”。0.999…的问题在暴雪娱乐的Battle.net论坛的头七年也是一个非常受欢迎的话题,以致于该公司在2004年的愚人节不得不发布了一则“新闻”,声明0.999…就是1:

然后便提供了两个证明,一个是极限的证明,另一个是乘以10的证明。

虽然实数形成了一个非常有用的数系,把“0.999…”解释为一个实数的决定毕竟还是一个约定,蒂莫西·高尔斯在《Mathematics: A Very Short Introduction》(《数学:一个非常简短的介绍》)中提到,0.999… = 1的等式也是一个约定:

我们可以用不同的规则或新的事物来定义其它数系;在数系中,以上的证明便需要重新解释。我们就有可能发现,在某一个给定的数系中,0.999…和1并不一定就是相等的。然而,许多数系都是实数系的延伸,而不是独立的替代物,所以0.999… = 1仍然成立。就算是在这数系中,我们依然值得去检查其它的数系,不仅仅为了知道0.999…是怎样表现的(如果“0.999…”既有意义又不含糊),也为了知道相关现象的表现。如果这种现象与实数系统中的现象不一致的话,那么至少一个建立在这个系统中的假设便一定不成立了。

0.999… = 1的证明依赖于标准实数的阿基米德性质:不存在非零的无穷小。存在着数学上密切相关的有序代数结构是非阿基米德的,其中包括标准实数的各种各样的替代品。0.999…的意义与我们使用的结构有关。例如,在对偶数中,引进了一个新的无穷小单位ε,就像复数系统中的虚数单位一样,但是ε² = 0。这样便得出了一个在自动微分中十分有用的结构。我们可以给予对偶数一个字典序,这样ε的倍数就非阿基米德原素。但是,要注意到,作为实数的延伸,在对偶数中仍然有0.999… = 1。尽管ε在对偶数中存在,ε/2也存在,所以ε就不是“最小的正对偶数”。确实是这样,在实数中,并不存在这类的数。

另外一种构造标准实数的替代品的方法,是使用拓扑斯理论和替代的逻辑,而不是集合论和经典的逻辑(一种特殊情况)。例如,在光滑无穷小分析中,就存在没有倒数的无穷小。

非标准分析因包含了一个有无穷小(及它们的反元素)完整阵列的系统而众所周知,它提供了一个不同的,也许是更加直观的,对微积分的处理。A.H. Lightstone在1972年提供了一个非标准小数展开式的发展,其中每一个位于(0, 1)之内的扩展的实数,都有一个唯一的扩展的小数展开式:数列0.ddd…;…ddd…,由扩展的自然数作索引。在这种形式中,0.333…有两种自然的展开式,都不与1/3相差无穷小:

组合博弈论也提供了替代的实数,无穷的蓝-红Hackenbush就是一个相关的例子。1974年,埃尔温·伯利坎普描述了一个Hackenbush字串与实数的二进制展开式之间的对应关系,由数据压缩的想法所促动。例如,Hackenbush字串LRRLRLRL…的值是0.0101012… = 1/3。然而,LRLLL…的值(对应着0.111…2)则与1相差无穷小。两个数的差是超实数1/ω,其中ω是第一个无穷序数;相关的博弈是LRRRR…或0.000…2

另外一种也可以使以上证明不成立的方法,就是1 − 0.999…根本就不存在,因为减法并不一定就是可能的。具有加法运算但没有减法运算的数学结构包括可交换半群、可交换幺半群,以及半环。里奇曼考虑了两种这类的系统,使得0.999…< 1。

首先,里奇曼把非负的“小数”定义为字面上的小数展开式。他定义了字典序和一种加法运算,注意到0.999… < 1仅仅因为在个位数0 < 1,但对于任何一个有限小数,都有0.999… + = 1 + 。所以“小数”的一个独特之处,是等式两边不能同减一个数;另外一个独特之处,就是没有“小数”对应着1⁄3。把乘法也定义了以后,“小数”便形成了一个正的、全序的、可交换的半环。

在定义乘法的过程中,里奇曼还定义了另外一种系统,他称之为“分割”,它是小数的戴德金分割的集合。通常用这种定义便可以得出实数,但对于小数他既允许分割(−∞, ),又允许“主分割”(−∞, ]。这样做的结果,就是实数与“小数”“不舒服地住在一起”。这个系统中也有0.999… < 1。在分割中不存在正的无穷小,但存在一种“负的无穷小”──0−,它没有小数展开式。里奇曼得出结论,0.999… = 1 + 0−,而方程“0.999… + = 1”则没有解。

问到关于0.999…的时候,初学者常常相信应该有一个“最后的9”,也就是说,相信1 − 0.999…等于一个正数,可以写为“0.000…1”。不管那有没有意义,目标都是明确的:把1加在0.999…中的最后的9上,就会把所有的9变成0,并在个位数留下一个1。如果考虑到其它的原因,这种想法便不成立了,这是因为在0.999…中,并不存在“最后的9”。对于包含最后的9的无穷多个9,我们必须从别的地方去寻找。

进数是在数论中引起兴趣的又一个数系。像实数那样,进数可以从有理数通过柯西序列得到;但是,这种结构使用了另外一种度量,0与之间的距离比0与1的距离还要近,而0与的距离又比0与的距离近。对于素数来说,进数便形成了一个域,而对于其它的,包括10来说,则形成了一个环。所以在进数中可以进行算术,这种数系也不存在无穷小。

在10进数中,类似于小数展开式的事物位于小数点的左面。10进展开式…999确实有一个最后的9,而没有第一个9。我们可以把1加在个位数上,这样进位之后就只剩下0了:1 + …999 = …000 = 0,所以…999 = −1。另外一种推导用到了等比级数。“…999”所指的无穷级数在实数中不收敛,但在10进数中收敛,所以我们可以使用大家熟悉的公式:

(与前面的级数比较。)第三种推导是一个七年级学生发明的,他对老师所讲的0.999… = 1的极限证明感到怀疑,但因而产生了灵感,把以上乘以10的证明应用在相反的方向上:如果 = …999,则10 = …990,因此10 = − 9,所以 = −1。

作为一个最后的延伸,由于0.999… = 1(在实数中),而…999 = −1(在10进数中),那么我们可以“盲目、大胆地摆弄符号”,把两个等式相加起来,得出:…999.999… = 0。这个等式在10进展开式中和标准小数展开式中都是没有意义的,但假如我们研究出一种“双小数”的理论,其中小数点左面和右面都可以无限延伸,那么这个等式便是有意义和正确的。

相关

  • 免疫组织化学免疫组织化学染色法(英语:immunohistochemistry (IHC))是指在抗体上结合萤光或可呈色的化学物质,利用免疫学原理中抗原和抗体间专一性的结合反应,检测细胞或组织中是否有目标抗原
  • 非典型抑郁障碍非典型忧郁症(Atypical Depression)属于慢性忧郁症(轻郁症)与忧郁症的亚型。非典型忧郁症患者与抑郁型忧郁(Melancholic depression)患者不同,前者能体验正面事物带来的心情改善,而
  • 双面真理说双面真理说(Dialetheism)是指存在双面真理(dialetheia),即命题P和~P同为真的命题。这一学说反对基于亚里士多德的无矛盾律(有时又称为矛盾律),即P∧~P必然为假的传统逻辑观。根据Gra
  • 魏悦广魏悦广(1960年1月-)力学家,中国科学院院士,北京大学博雅讲席教授。1960年1月出生于陕西省渭南市。1982年1月毕业于西安科技大学,获力学学士学位;1986年7月毕业于中国矿业大学北京研
  • 风格矫饰主义,又有译为风格主义、手法主义,有时也被过于简单化地称为形式主义。是一种在16世纪出现的艺术风格。最早缘于瓦萨里的著作《艺苑名人传》,他用“grande maniera”等词来
  • A Mari Usque Ad Mare从大海到大海(拉丁语:A Mari Usque Ad Mare;英语:From Sea to Sea;法语:D'un océan à l'autre)是加拿大的国家格言。这个短语是拉丁文,出自武加大译本的圣经(诗篇 72:8 )。武加大译
  • 集中营朝鲜民主主义人民共和国集中营(或称强制收容所),是朝鲜民主主义人民共和国境内的一种用于刑事拘留和劳役惩罚的场所,主要收容大量政治犯。这些场所在朝鲜没有统一的名称,有“管理
  • 连胜 (运动)连胜是指在体育运动中,连续在至少一场赛事获得胜利。连胜可以是棒球、足球、篮球、曲棍球这类团队运动,或者是网球这类个人运动。在一个赛季中连胜便是指在该赛季的每场比赛都
  • 动态光散射动态光散射,也称作光子相关光谱或准弹性光散射,是一种物理表征手段,用来测量溶液或悬浮液中的粒径分布,也可以用来测如量高分子浓溶液等的复杂流体的行为。当光射到远小于其波长
  • 方贵伦方贵伦(马来语:Fong Kui Lun;1946年9月28日-),祖籍广东省佛山市顺德区,马来西亚吉隆坡武吉免登行动党国会议员,1968年入党,也是民主行动党全国财政兼直辖区署理主席。 人民公正党