电偶极矩

✍ dations ◷ 2025-09-18 16:27:07 #静电学,电磁学

在物理学里,电偶极矩衡量正电荷分布与负电荷分布的分离状况,即电荷系统的整体极性。

对于分别带有正电量 + q {\displaystyle {+}q} 、负电量 q {\displaystyle -q} 的两个点电荷的简单案例,电偶极矩 p {\displaystyle \mathbf {p} } 为:

其中, d {\displaystyle \mathbf {d} } 是从负电荷位置指至正电荷位置的位移矢量。

这方程意味着电偶极矩 p {\displaystyle \mathbf {p} } 的方向是从负电荷指向正电荷。注意到这跟在正电荷与负电荷之间的电场线的方向相反——从正电荷开始,在负电荷结束。这里并没有矛盾,因为电偶极矩与电偶极子的取向有关,即与电荷的相对位置有关;它不能单独直接地表示出电场线的方向。

称这双电荷系统为“物理电偶极子”。在距离超远于两个点电荷相隔距离之处,物理电偶极子所产生的电场,可以近似为其电偶极矩所产生的电场。令物理电偶极子的两个点电荷相隔距离 d {\displaystyle \mathbf {d} } 趋向于 0 ,同时保持其电偶极矩 p {\displaystyle \mathbf {p} } 不变,则极限就是“点电偶极子”,又称为“纯电偶极子”。物理电偶极子产生的电场,其多极展开式的一次项目就是点电偶极子产生的电场。

一般而言,给定在区域 V {\displaystyle \mathbb {V} '} 内的连续电荷分布,其电偶极矩为

其中, r {\displaystyle \mathbf {r} } 是场位置, r {\displaystyle \mathbf {r} '} 是源位置, ρ ( r ) {\displaystyle \rho (\mathbf {r} ')} 是在源位置 r {\displaystyle \mathbf {r} '} 的电荷密度, d 3 r {\displaystyle d^{3}\mathbf {r} '} 是微小体元素。

设定 N {\displaystyle N} 个点电荷,则电荷密度是 N {\displaystyle N} 个狄拉克δ函数的总和:

其中, r i {\displaystyle \mathbf {r} _{i}'} 是点电荷 q i {\displaystyle q_{i}} 的位置矢量。

这些点电荷的电偶极矩为

对于两个同电量异性的电荷案例,标记正电荷与负电荷的位置分别为 r + {\displaystyle \mathbf {r} _{+}'} r {\displaystyle \mathbf {r} _{-}'} ,则电偶极矩为

电偶极矩 p ( r ) {\displaystyle \mathbf {p} (\mathbf {r} )} 与位移矢量 d {\displaystyle \mathbf {d} } 的方向相同,都是从负电荷指向正电荷。由于电偶极子是中性的,电偶极矩与观察者的参考点 r {\displaystyle \mathbf {r} } 无关。

设定 N {\displaystyle N} 个电偶极子,其电偶极矩分别为 p i ,   i = 1 , 2 , , n {\displaystyle \mathbf {p} _{i},\ i=1,2,\dots ,n} ,则这些电偶极子的总电偶极矩为

由于每一个电偶极子都是中性的,整个系统也是中性的。因此,总电偶极矩与观察者的参考点 r {\displaystyle \mathbf {r} } 无关。

当论述像质子、电子一类的非中性系统时,会出现电偶极矩与参考点有关的问题。对于这些案例,常规是选择系统的质心为参考点,而不是任意点。电量中心似乎是比较合理的参考点,但是这会造成电偶极矩等于零的结果。选择质心为参考点可以保证电偶极矩是系统的一个内禀性质(intrinsic property)。

如右图所示,设定正电荷 + q {\displaystyle {+}q} 与负电荷 q {\displaystyle {-}q} 的位置分别为 r + = ( 0 , 0 , d / 2 ) {\displaystyle \mathbf {r} _{+}=(0,0,d/2)} r = ( 0 , 0 , d / 2 ) {\displaystyle \mathbf {r} _{-}=(0,0,-d/2)} ,则在场位置 r {\displaystyle \mathbf {r} } 的电势 ϕ {\displaystyle \phi }

应用余弦定理,假设场位置离电偶极子足够远, d / 2 r {\displaystyle d/2\ll r} ,则 1 / r + {\displaystyle 1/r_{+}} 1 / r {\displaystyle 1/r_{-}} 可以分别近似为

将这两个公式代入电势的方程,可以得到

设定电偶极矩 p {\displaystyle \mathbf {p} }

其中, d {\displaystyle \mathbf {d} } 是从负电荷指至正电荷的位移矢量。

则电势以矢量标记为

电偶极子的电势随着距离平方递减;而单独电荷是随着距离的一次方递减。所以电偶极子的电势递减速度比单独电荷快很多。

电偶极子的电场是电势的负梯度。采用球坐标 ( r , θ , φ ) {\displaystyle (r,\theta ,\varphi )} ,电场 E {\displaystyle \mathbf {E} } 的三个分量 E r {\displaystyle E_{r}} E θ {\displaystyle E_{\theta }} E φ {\displaystyle E_{\varphi }} 分别为

或者,以矢量表示为

注意到这个方程并不完全正确,这是因为电偶极子的电势有一个奇点在它所处的位置(原点 O {\displaystyle \mathbf {O} } )。更仔细地推导,可以得到电场为

其中, δ 3 ( r ) {\displaystyle \delta ^{3}(\mathbf {r} )} 是三维狄拉克δ函数

更详尽细节,请参阅偶极子。

假设一个系统里有 N {\displaystyle N} 个电荷,标记第 i {\displaystyle i} 个电荷 q i {\displaystyle q_{i}} 的位置为 r i {\displaystyle \mathbf {r} _{i}'} ,则这系统的电偶极矩 p = i = 1 N   q i r i {\displaystyle \mathbf {p} =\sum _{i=1}^{N}\ q_{i}\mathbf {r} _{i}'} 给出其极化程度。但是,对于中性系统,电偶极矩无法给出这些电荷的位置资料。“电偶极矩密度” p ( r ) {\displaystyle {\mathfrak {p}}(\mathbf {r} ')} 定义为每单位体积的电偶极距;它可以给出在空间内某区域 V {\displaystyle \mathbb {V} '} 的总电偶极矩:

区域 V {\displaystyle \mathbb {V} '} 的电偶极矩密度 p ( r ) {\displaystyle {\mathfrak {p}}(\mathbf {r} ')} 所产生的电势为

在计算包含这些电荷的区域的电势或电场时,电极化强度 P ( r ) {\displaystyle \mathbf {P} (\mathbf {r} )} 拥有关于这些电荷的一些资料。假若要更准确地计算电势或电场,则电极化强度必需拥有更多关于这些电荷的资料。对于某些案例,只设定 P ( r ) = p ( r ) {\displaystyle \mathbf {P} (\mathbf {r} )={\mathfrak {p}}(\mathbf {r} )} 就足够准确了;对于有些特别案例,可能需要给出更多细节描述,例如,除了电偶极矩密度以外,再添加电四极矩密度(electric quadrapole moment density)资料。

束缚电荷是束缚于介电质内部某微观区域的电荷。这微观区域指的是像原子或分子一类的区域。自由电荷是不束缚于介电质内部某微观区域的电荷。电极化会稍微改变物质内部的束缚电荷的位置,虽然这束缚电荷仍旧束缚于原先的微观区域,这形成一种不同的电荷密度,称为“束缚电荷密度” ρ b o u n d {\displaystyle \rho _{bound}}

总电荷密度 ρ t o t a l {\displaystyle \rho _{total}} 是“自由电荷密度” ρ f r e e {\displaystyle \rho _{free}} 与束缚电荷密度的总和:

在介电质的表面,束缚电荷以表面电荷的形式存在,其表面密度称为“面束缚电荷密度” σ b o u n d {\displaystyle \sigma _{bound}}

其中, n ^ o u t {\displaystyle {\hat {\mathbf {n} }}_{\mathrm {out} }\,} 是从介电质表面往外指的法矢量。假若,介电质内部的电极化强度是均匀的, P {\displaystyle \mathbf {P} } 是个常数矢量,则这介电质所有的束缚电荷都是面束缚电荷。

高斯定律表明,电场的散度等于总电荷密度 ρ t o t a l {\displaystyle \rho _{total}} 除以电常数:

电极化强度的散度等于负束缚电荷密度:

电势移 D {\displaystyle \mathbf {D} } 以方程定义为

所以,电势移的散度等于自由电荷密度 ρ f r e e {\displaystyle \rho _{free}}

假设一介电质拥有自由电荷密度 ρ f r e e ( r ) {\displaystyle \rho _{free}(\mathbf {r} ')} 、电偶极矩密度 p ( r ) {\displaystyle {\boldsymbol {\mathfrak {p}}}(\mathbf {r} ')} 、电四极矩密度 Q ( r ) {\displaystyle {\boldsymbol {\mathfrak {Q}}}(\mathbf {r} ')} 等等,平滑地分布于区域 V {\displaystyle \mathbb {V} '} ,则其电势为

其中, x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} x 3 {\displaystyle x_{3}} r {\displaystyle \mathbf {r} } 的三个直角坐标。

为了方便运算,只取至电偶极矩密度项目,

应用矢量恒等式与分部积分法,带单撇号的梯度符号表示对于源位置的偏微分,

积分方程的右手边第二个项目变为

应用散度定理,

假设区域 V {\displaystyle \mathbb {V} '} 变为无穷大,则其闭曲面 S {\displaystyle \mathbb {S} '} 的积分项目趋向于零,所以,

注意到电势乃是由总电荷决定:

由于积分于任意体积,以下全等式成立(由于不会造成歧义,可以不使用单撇号):

因此,束缚电荷密度与电偶极矩密度的关系为

设定电极化强度为电偶极矩密度: P = p {\displaystyle \mathbf {P} ={\boldsymbol {\mathfrak {p}}}} ,则

类似地,可以将电四极矩密度项目加入为电极化强度的一部分。例如,在计算电磁波的散射于介电质时,电荷、电偶极子、电多极子等等,这些实体会各自不同地散射电磁波,因此,可能需要使用比电偶极矩近似法更加精确的方法。

前面论述做了一个假设,即区域 V {\displaystyle \mathbb {V} '} 变为无穷大。这假设促使闭曲面 S {\displaystyle \mathbb {S} '} 的积分项目趋向于零;倘若不作这假设,倘若区域 V {\displaystyle \mathbb {V} '} 的体积为有限尺寸,则闭曲面

相关

  • 分生孢子分生孢子(Conidium、复数为Conidia)有时又被称作厚壁孢子或厚壁分生孢子,是一种无性、且不会移动的真菌孢子。其名称取自于古希腊文的土壤κόνις kónis,也称有丝分裂孢子,因
  • 己内酰胺己内酰胺(Caprolactam,简称CPL),化学式为(CH2)5C(O)NH的有机化合物,是6-氨基己酸(英语:Aminocaproic acid)(ε-氨基己酸)的内酰胺,也可看作己酸的环状酰胺。纯净的己内酰胺是白色的固体
  • URI统一资源标识符(英语:Uniform Resource Identifier,缩写:URI)在电脑术语中是一个用于标识某一互联网资源名称的字符串。该种标识允许用户对网络中(一般指万维网)的资源通过特定的协
  • 氧化还原电位标准电极电势可以用来计算化学电池或原电池的电化学势或电极电势。标准电极电位是以标准氢原子作为参比电极,即氢的标准电极电位值定为0,与氢标准电极比较,电位较高的为正,电位
  • 毛发学毛发学(Trichology)是皮肤病学中的分支,是有关头发及头皮的科学及医学研究。Trichologists是头发及头皮的专科医师,诊断脱发、毛发变薄、变少的原因,以及其他头皮疾病的原因,并依
  • 梅尔·吉勃逊澳洲电影及电视美艺学院奖最佳男主角 1979年 《蒂姆》 1981年 《加里波底》 澳洲电影及电视美艺学院国际奖最佳导演 2016年 《血战钢锯岭》梅尔·科尔
  • 土壤盐碱化土壤盐化(英语:soil salinization,又称土壤盐碱化)是常发生于气候炎热、干燥,实施灌溉却排水不良之沙漠及沿海地区等农牧业地区的现象。盐害会危害建筑物、公共设施以及出土遗迹
  • Virginia Tech弗吉尼亚理工学院暨州立大学(英语:Virginia Polytechnic Institute and State University),简称弗吉尼亚理工大(英语:Virginia Tech),是一所创建于1872年的综合性公立赠地大学,在美国
  • 本溪水洞本溪水洞位于中国辽宁省本溪市东郊山区的太子河畔,距市中心26公里。是目前发现的世界最长的地下充水溶洞,于1983年对外开放;1994年被批准为国家重点风景名胜区;1997年被国际旅游
  • 矢量字体矢量字体是与点阵字体相对应的一种字体。矢量字体的每个字形都是通过数学方程来描述的,一个字形上分割出若干个关键点,相邻关键点之间由一条光滑曲线连接,这条曲线可以由有限个