K介子

✍ dations ◷ 2024-12-23 01:29:14 #介子

K+
: us
K0
: ds / sd

在粒子物理学中,K介子(Kaon,标记为K))是带有奇异数这一量子数的四种介子的任一种。在夸克模型中,我们知道它们含有一个奇夸克(或其反夸克),及一个上或下夸克的反夸克(或其夸克)。

自从它们在1947年被发现之后,K介子为基础相互作用的性质提供了大量的资料。在建立粒子物理学标准模型基础的过程中,它们有着不可或缺的角色,例如强子的夸克模型及夸克混合的理论(后者于2008年被诺贝尔物理学奖肯定)。在人类对基础守恒定律的了解中,K介子也有着杰出的贡献:CP破坏(一种造成大家所见的宇宙物质-反物质失衡的现象)的发现在1980年被诺贝尔物理学奖肯定,这种现象就是在K介子系统被发现的。

四种K介子分别为:

从夸克模型分配可轻易看出,K介子组成两组同位旋双重态;也就是说它们属于SU(2)基础表示的2。奇异数为+1的一组包括K+
及K0
。而它们的反粒子组成另一组双重态(奇异数为-1)。

(>所有衰变的5%)

π+
+ π0

π+
+ π+
+ π−
or
π0
+ e+
+ ν
e

π0
+ π0

π0
+ π0
+ π0
or
π+
+ π0
+ π−

^ 强本征态。没有确切的寿命。
^ 弱本征态。构成内没有小ε的CP破坏项。
^ K0
L及K0
S的质量于上表上与K0
无异。然而,已知K0
L及K0
S的质量有异,差异的大小尺度为6988350000000000000♠3.5×10−12 MeV/2。
^ 由于中性粒子混合的关系,所以K0
L及K0
S并非奇异数的本征态。

尽管K0
及其反粒子K0
经由强相互作用产生,但是它们经由弱相互作用衰变。因此,在诞生后它们较适合被视为两个有着相当不同寿命的弱本征态:

(见下文的中性K介子混合)

虽然其他中性味的介子也有近似的混合情况,但是只有K介子的两种弱本征态被视为两种粒子,因为它们两者的寿命差异实在很大。

1964年一实验发现长命K很少会衰变成两个π介子,这正是发现CP破坏的关键之一(见下文)。

K+
的主要衰变模式为:

内量子数“奇异数”的发现,标志着粒子物理学最令人振奋的时代的开端,即使在五十年后的今天看来,这个时代仍没有到达终点……总的来说,实验推动着整个发展,而大发现的到来往往都是出人意表,甚至违反了理论学者所想的预期。
—— 《CP破坏》,I·I·比吉与三田一郎著,《ISBN 0-521-44349-0》

在1947年,曼彻斯特大学G·D·罗彻斯特(英语:George Rochester)和克里福德·查理斯·巴特勒(英语:Clifford Charles Butler)发表了两辐宇宙线引发反应的云室照片,一辐看起来是一中性粒子衰变成两个带电荷的π介子,另一辐看起来是一带荷的粒子衰变成一带电荷的π介子及一些中性的东西。新粒子的质量估算相当粗略,约为质子质量的一半。之后这种“V粒子”的个案就慢慢地涌现。

加州理工学院取得最早的突破,他们为了得到更佳的宇宙线接收,而把云室运上了威尔逊山。在1950年,他们报告了30个带电荷及4个中性的V粒子。受这个所启发,往后几年的很多观测都在山顶上进行,而1953年之前,所用的词汇如下:“L介子”指的是μ子或π介子。“K介子”指的是质量介乎π介子及核子间的粒子;而“超子”指的质量比核子大的粒子。

K介子与超子的衰变非常慢;一般大小尺度为6990100000000000000♠10−10 s。然而,在π介子-质子反应所生产出的这些粒子的衰变则要快得多,时间大小尺度为6977099999999999999♠10−23 s。这个不协调问题由亚伯拉罕·派斯所解决,他设定了一个新的量子数的叫奇异数,在强相互作用下守恒,但在弱相互作用下则不守恒。由于奇夸克及其反粒子一起的“相伴产生”,所以出现很大量的奇异粒子。奇异数很快就被指出它不是一个乘法量子数,因为如果是的话,奇异数会允许一些未被当时新的同步加速器所观测到的反应;布鲁克哈芬国家实验室在1953年,劳伦斯伯克利国家实验室在1955年被委托制作同步加速器。

带电荷的奇介子有两种衰变模式:

由于两种衰变的终态具有不同的宇称,所以科学家们认为两种初态应该为不同种类的粒子,因此是两种有区别的粒子。但是,在愈来愈准确的测量下,都没有发现两者之间的质量与寿命有什么差别,由此显示它们是同一种粒子。这个问题被称为τ-Θ问题。直到发现弱相互作用的宇称不守恒才被解决。由于介子通过弱相互作用衰变,宇称并不需要守恒,因此两种衰变可能由同一种粒子引起,也就是现在的K+

尽管宇称不守恒,电荷-宇称对称在一开始时是被认为是守恒的。要明白CP破坏的发现,就必须明白中性K介子的混合;这个现象的发生并不需要CP破坏,但是就是在这个背景下第一次测量到CP破坏。

由于中性K介子带有奇异数,它们不能互为对方的反粒子。所以一定有两种不同的K介子,两者奇异数的差为两个单位。问题是如何得知这两种介子的存在。而答案用到一种现象叫中性粒子振荡,在这种现象中两种介子会通过弱相互作用互相变换,过种中弱相互作用会导致它们衰变成π介子(见右图)。

这些振荡最早由默里·盖尔曼与亚伯拉罕·派斯共同研究。他们研究过相反奇异数态在CP不变下随时间的演化。用矩阵形式写法如下

其中ψ为系统的量子态,由两个基态(在时间t=0时为a及b)的波辐共同决定。哈密顿矩阵对角线上的元()是守恒奇异数的强相互作用物理所引起的后果。两个对角线元必须相等,因为在没有弱相互作用的情况下,粒子与其反粒子的质量相等。不在对角线上的元(Δ),负责混合相反的奇异粒子,它们是由弱相互作用所引起的;CP对称要求它们全部都是实数。

矩阵为实数的后果是,这两种态的概率会永恒地来回振荡。然而,假若矩阵的任何部分为虚数,就像CP对称所禁止的那样,那么整个组合的一部分会随时间而缩减。缩减的部分可以是一个分量(a)或另一个(b),或是两者的混合。

把矩阵对角化后可得本征态。这样会产生新的本征矢量,我们可以把它叫做K1,它是两相反奇异数态的总和,而K2则是两态间的差。K1及K2为CP的本征态,两者有着相反的本征量;K1的CP为+1,而K2则为-1。由于二π介子系统的CP也是+1,所以K1可以这样衰变。而K2则必须衰变成三个π介子。由于K2的质量只比三个π介子加起来大一点点,所以衰变过程非常缓慢,大概比K1衰变成两个π介子慢600倍。这两种不同的衰变模式由利昂·莱德曼及其同事于1956年观测到,并确立了中性K介子两个弱本徴态(在弱相互作用下,有着特定衰变寿命的态)的存在。

这两个弱本征态被称为K
L(长命K)及K
S(短命K)。在假定CP对称的情况下,K
S=K1,K
L=K2。

一初态为K0
的粒子束,会在传播时变成自己的反粒子,而反粒子又会变回原来的粒子,如此类推。这就是粒子振荡。在观测弱相互作用衰变成轻子时,发现K0
总是衰变成电子,而反粒子K0
则总是衰变成正电子。前文的分析提到纯K0
及反粒子K0
的粒子源,与电子与正电子生产率的关系。分析这种半轻子衰变的时间演化,可以发现有振荡现象,并且能够得悉K
S及K
L间的质谱分裂。由于这是由弱相互作用引起的,质谱分裂非常小,约为每一态质量的10−15倍。

一束中性K介子在飞行中衰变,因此短命的K
S就此消失,剩下一束纯K
L。假设这束粒子被射进物质里,那么K0
及其反粒子K0
就会与原子核有着不同的相互作用。K0
与核子产生准弹性散射,而反粒子K0
则有可能产生超子。由于两个部分与核子有着不同的相互作用,两粒子间失去了原有的量子同调。不久之后,罗伯特·艾德尔与同事们报告K
S的再生比预期多,就此开启了历史的新篇章。

在核实艾德尔的结果时,布鲁克海文国家实验室的詹姆斯·克罗宁与瓦尔·菲奇于1964年发现K
L衰变成两个π介子(CP=+1)。根据前文的解释,要上述衰变成立,就必须假设初态及终态的CP值不一样,因此他们马上提出了CP破坏。其他解释,例如非线性量子物理及未被观测到的新粒子,在不久后就被排除,剩下的CP破坏就是唯一的可能性。克罗宁与菲奇因这个发现而于1980年了荣获诺贝尔物理学奖。

事实上,尽管K
L及K
S为弱本征态(因为它们有各自不变的衰变平均寿命,而衰变就是由弱相互作用所引起的),但是它们并不太是CP本征态。取而代之的是,在ε很小的情况下(在一个重整化以内),

而K
S也是相近的情况。因此有些时候K
L 衰变时CP=+1,而同样地K
S 可以有CP=-1的衰变。这就是间接CP破坏,由K0
及其反粒子混合所造成的CP破坏。同时有一种直接CP破坏,也就是在衰变过程当中的P破坏。因为混合与衰变都是由W玻色子的同一种相互作用所造成,所以存在两种CP破坏,也是因为这样才会有CKM矩阵所预测的CP破坏。

相关

  • 高血压性肾病高血压性肾病(Hypertensive nephropathy、"高血压性肾硬化"(hypertensive nephrosclerosis)、"高血压肾病"(Hypertensive renal disease))是一种医学病症、指的是由慢性高血
  • 维纳斯维纳斯(拉丁语:Venus)是古罗马神话里的爱神、美神,同时又是执掌生育与航海的女神,相对应于希腊神话的阿芙萝黛蒂(Aphrodite)。拉丁语的“金星”和“星期五”等词都来源于祂。维纳斯
  • 亚穆纳河亚穆纳河(梵文:यमुना,英语:Yamuna River),又名朱木纳河、阎牟那河,是印度北部主要河流之一、恒河的支流。全长1,370公里,其水系面积达366,223平方千米(141,399平方英里),占恒河盆
  • 中国天文学史中国天文学史是天文学史的一个分支,也是中国科学史的一个组成部分。中国的古天文学是非常发达的,有记载的天象记录是当时世界上最丰富、最有系统。自秦汉以来,所颁布的历法有一
  • 末日幻想末日小说(英语:apocalyptic fiction)是科学幻想中幻想由于核战争、瘟疫、丧尸、外星生命入侵、撞击事件、人工智能叛变、技术奇异点、种族退化、超自然现象、末世论、地球的未
  • 甲苯二异氰酸酯甲苯二异氰酸酯 (TDI)是一种有机化合物,化学式为CH3C6H3(NCO)2。在六种可能的异构体中,有两种作为商品是重要的:2,4-TDI (CAS: 584-84-9)和2,6-TDI (CAS: 91-08-7)。2,4-TDI以
  • g/L毫克每公合(表示法:mg/dL)是血液生化检查常用的浓度单位。常规检验如血糖、血胆固醇、血三酸甘油脂等,都会使用这个单位来表示。
  • 剑湖山咖啡博览馆剑湖山世界(英语:Janfusun Fancyworld)是台湾知名游乐园,位于云林县古坑乡永光村剑湖附近,综合“休闲、游乐、文化、科技”四大功能。全园占地面积60多公顷,主要大型热门活动常见
  • 方音符号方音符号( ㄏㆲ  ㄧㆬ ㄏㄨ㇒ ㄏㄜ˫ᐳ,台湾话白话字╱台罗拼音:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Hel
  • 伊斯兰教末世论伊斯兰教的末世论和伊斯兰教六大信仰有关。伊斯兰教和其他的亚伯拉罕诸教一样,都教导死后肉体复活、神创世的计划以及人类灵魂不灭等教义;义人将获得乐园(天堂)的欢乐,而恶人将在