九维空间

✍ dations ◷ 2025-12-11 06:35:53 #维度

在数学中, 一个实数的序列可以被理解为空间中的一个位置。当等于九时,所有这样的位置的集合被称为九维空间。通常这种空间被研究为一个向量空间,而没有任何距离的概念。九维欧几里得空间是一个配备了一个欧几里得距离的九维空间,它由点积定义。

更广义的来说,该术语可以指任何体 (数学)上的九维向量空间,例如九维复矢量空间,其实际有着十八个维度。 它同时也可能指九维流形例如九维球面,或其它各种几何构造。

在九维空间中的多胞形都被称为八维多胞形。最常见的是正多胞形,而这些正多胞形在八维空间中只有三个:九维单纯形(英语:9-simplex),九维超方形(英语:9-cube),九维正轴形(英语:9-orthoplex)。 而更广义的类型是九维均匀多胞形是由反射的基本对称群构造出的,每一个域由考斯特群定义。每一个均匀多胞形是由一个环形考斯特图(英语:Coxeter-Dynkin diagram)定义的。九维超半方形(英语:9-demicube)是一个D9家族中的一个特殊多胞形。

相关

  • 时区美国时区是覆盖美国及其属地九个时区的总称,配以由联邦及地区立法制订的夏令时法规使用。美国时区由《美国法典》第15章(Title 15 of the United States Code)第260节规定,时区
  • 健康素养健康素养(Health literacy)也称为健康识读,是有能力获得医疗卫生资讯,并且阅读、理解,进而应用此资讯来进行健康相关的决定,也可以依照指示接受治疗。有许多有关健康素养的定义。
  • 阻却违法阻却违法(affirmative defense、积极抗辩、确认的抗辩、肯定性答辩)在民事诉讼或刑事的指控,是除了原告人或检察官所指称的事实外;如果还有一组事实,经过被告证明,结果原告人或检
  • 解婕翎解婕翎(Manaki Xie Jie Ling,1985年3月24日-),台湾女主持人、演员、模特儿、YouTuber。自2006年开始,解婕翎活跃于展场活动,除舞蹈以外,还尝试主持工作。解婕翎快速且无须背稿的临场
  • 华蘅芳华蘅芳(1833年-1902年),又作华衡芳,字若汀,江苏金匮县(今属江苏无锡)人,清末数学家。少年喜欢数学,十四岁读通程大位《算法统宗》,咸丰十一年十一月(1861年12月)江苏巡抚薛焕介绍徐寿、华
  • 马尔代夫国徽马尔代夫国徽五个元素组成:中间为一株椰子树,两侧为国旗。中央为金色的新月抱星的图案,象征马尔代夫是伊斯兰国家。下面的绶带书有马尔代夫的传统国名(الدولة المحل
  • 潜行吧!奈亚子《潜行吧!奈亚子》(日语:這いよれ!ニャル子さん),是逢空万太著、狐印绘插画,SoftBank Creative旗下GA文库的轻小说作品,并改编成动画,目前已完结。某日夜里,高中生八坂真寻,行走在夜道
  • 沈廷文沈廷文(?-?),字原蘅,号元洲。浙江秀水人。生卒年不详。清康熙二十七年(1688年)状元。授翰林院修撰。康熙三十三年(1694年)任会试册考官。
  • 释法程法程师父(1958年-2016年),出生于台湾,19岁于屏东佳冬慈恩寺剃度出家。同年就读于妙清佛学院,依止显明法师修学天台教义。曾先后修学天台宗、法华玄义、教观纲宗、唯识、戒律等全面
  • 脱水机脱水机是一种洗涤机械,一般用于衣物、纺织物品、农作物等物品洗涤之后的除水过程。脱水之后再利用烘干机加以烘干,则可以达到彻底干燥的效果。脱水机的主要部件是不锈钢或塑胶