代数方程

✍ dations ◷ 2025-11-22 00:24:21 #代数方程
代数方程是未知数和常数进行有限次代数运算所组成的方程。代数方程包括有理方程和无理方程。有理方程又包括整式方程与分式方程。一元一次方程都可化为其标准形式 a x + b = 0 {displaystyle ax+b=0} ( a ≠ 0 {displaystyle aneq 0} )。解一元一次方程通常使用以下五步进行求解:“去分母”、“去括号”、“移项”、“合并同类项”、“系数化为1”。解一元 n {displaystyle n} 次方程( n ≥ 2 {displaystyle ngeq 2} , n {displaystyle n} 为正整数)往往可以通过因式分解,化为 n {displaystyle n} 个一次因式的乘积,进而解出方程所有的根。另外,二次、三次、四次方程还可以利用求根公式求出其所有的根。然而,伽罗瓦理论指出,对于五次及其以上的一元整式方程,并不存在通用的求根公式。根据代数基本定理,任意复系数一元 n {displaystyle n} 次方程 f ( x ) = 0 {displaystyle f(x)=0} 有且仅有 n {displaystyle n} 个根( n {displaystyle n} 为正整数),重根按重数计。解分式方程通常先将方程两边乘以其分数项的最简公分母,化为整式方程。再解这个整式方程。最后剔除使原方程分母为0的所有根。剩下的根即为原方程的根。解无理方程先将被开方式中带有未知数的项移到等号的一边,将常数项移到等号的另一边。再两边乘方,去掉根号,化为有理方程。最后剔除使原方程被开方式小于0的所有根。剩下的根即为原方程的根。可见,由于分式中分母不为0,根式中被开方式大于或等于0,因此分式方程与无理方程都有可能产生“增根”。所以,有的分式方程与无理方程没有解。

相关

  • 不特定的间质性肺炎非特异性间质性肺炎(Non-specific interstitial pneumonia,简称NSIP)属于一种特发性间质性肺炎。症状包含咳嗽、呼吸困难,以及疲倦。目前认为属于一种自体免疫有关,可能为未分化
  • 信托信托(英语:Trust)是一项三方委托(英语:Fiduciary)的关系。第一方为委托人(英语:trustor,或英语:settlor),转移财产(一般为金钱,但不必须是金钱)至第二方(受托人(英语:Trustee)),使得第三方(受益人)
  • 德尔斐德尔斐(.mw-parser-output .Polytonic{font-family:"SBL BibLit","SBL Greek","EB Garamond","EB Garamond 12","Foulis Greek",Cardo,"Gentium Plus",Gentium,"Theano Didot
  • 伪鳄类伪鳄类(Pseudosuchia)是主龙形下纲中的两个主要演化支之一。它们的头骨通常是厚重的,尤其是与鸟颈类主龙相比;伪鳄类主龙的口鼻部通常是长而狭窄的,颈部短而强壮,四肢的结构介于典
  • 海上共和国海上共和国(意大利语:Repubbliche Marinare)是中世纪意大利和达尔马提亚沿海地区一批繁荣的城市国家的统称。传统上,其定义特别是4个意大利城市:阿马尔菲共和国、比萨共和国、热
  • 领鞭毛虫类 (choanoflagellate)领鞭毛虫纲(学名:Choanoflagellate)是一种原生生物,是单细胞或群体。拥有一根鞭毛,形态类似于淡水海绵的群体,表面的酪氨酸激酶受体也类似于海绵,被认为是动物的姐妹群。领鞭毛虫的
  • 钍-230钍-230是钍的放射性同位素之一,原子核由90个质子和140个中子构成,是一种痕量同位素,半衰期约七万五千年,可以用来测定珊瑚和确定洋流流量。20世纪初美国放射化学家伯特伦·博尔
  • 福克斯广播公司福斯广播公司(英语:Fox Broadcasting Company; 简称:Fox,常作全部大写为“FOX”),也被称为“福斯电视网”,是美国一家商业地面电视联播网,为福斯公司的旗舰资产。福斯广播公司的总部
  • 亚特兰大号《亚特兰大号》(法语:L'Atalante)是一部1934年尚·维果执导的法国电影,也是他生涯的代表作,被认为是影史上最伟大的电影之一。
  • 纽约证券交易所纽约证券交易所(英语:New York Stock Exchange,英文缩写:NYSE,有时简称纽约证交所或纽交所)与泛欧股票交易所合并前是世界上第二大证券交易所。交易时间为除周末和例行休市日的9:3