代数方程

✍ dations ◷ 2025-11-22 15:18:49 #代数方程
代数方程是未知数和常数进行有限次代数运算所组成的方程。代数方程包括有理方程和无理方程。有理方程又包括整式方程与分式方程。一元一次方程都可化为其标准形式 a x + b = 0 {displaystyle ax+b=0} ( a ≠ 0 {displaystyle aneq 0} )。解一元一次方程通常使用以下五步进行求解:“去分母”、“去括号”、“移项”、“合并同类项”、“系数化为1”。解一元 n {displaystyle n} 次方程( n ≥ 2 {displaystyle ngeq 2} , n {displaystyle n} 为正整数)往往可以通过因式分解,化为 n {displaystyle n} 个一次因式的乘积,进而解出方程所有的根。另外,二次、三次、四次方程还可以利用求根公式求出其所有的根。然而,伽罗瓦理论指出,对于五次及其以上的一元整式方程,并不存在通用的求根公式。根据代数基本定理,任意复系数一元 n {displaystyle n} 次方程 f ( x ) = 0 {displaystyle f(x)=0} 有且仅有 n {displaystyle n} 个根( n {displaystyle n} 为正整数),重根按重数计。解分式方程通常先将方程两边乘以其分数项的最简公分母,化为整式方程。再解这个整式方程。最后剔除使原方程分母为0的所有根。剩下的根即为原方程的根。解无理方程先将被开方式中带有未知数的项移到等号的一边,将常数项移到等号的另一边。再两边乘方,去掉根号,化为有理方程。最后剔除使原方程被开方式小于0的所有根。剩下的根即为原方程的根。可见,由于分式中分母不为0,根式中被开方式大于或等于0,因此分式方程与无理方程都有可能产生“增根”。所以,有的分式方程与无理方程没有解。

相关

  • 世界概况《世界概况》(英语:The World Factbook,又译作世界各国纪实年鉴)是由美国中央情报局出版的调查报告,发布世界各国及地区的概况,例如人口、地理、政治及经济等各方面的统计数据。因
  • 海地克里奥尔语海地克里奥尔语(海地克里奥尔语:Kreyòl ayisyen,.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code
  • 达尔文学说达尔文主义是与生物演化有关的一系列运动和概念,其中也包含与查尔斯·达尔文无关的思想。随着时间的推移,“达尔文主义”的含义已经发生了变化,这取决于谁在使用这个词语。在美
  • 帕博利珠单抗帕博利珠单抗(Pembrolizumab,商品名Keytruda,中文商品名为可瑞达、吉舒达)是用于癌症免疫疗法的人源化PD-1单克隆抗体。FDA批准该药用于治疗黑色素瘤、肺癌、头颈癌、霍奇金淋巴
  • 亨利五世《亨利五世》(Henry V)是英国剧作家威廉·莎士比亚创作的一部历史剧,据考证作于1599年。故事基于英格兰亨利五世国王的人生,着重描写百年战争期间阿金库尔战役的前后事件。该剧
  • 二氢叶酸还原酶1BOZ, 1DHF, 1DLR, 1DLS, 1DRF, 1HFP, 1HFQ, 1HFR, 1KMS, 1KMV, 1MVS, 1MVT, 1OHJ, 1OHK, 1PD8, 1PD9, 1PDB, 1S3U, 1S3V, 1S3W, 1U71, 1U72, 1YHO, 2C2S, 2C2T, 2DHF, 2W3A
  • 雪地极地雪藻(学名:Chlamydomonas nivalis)为衣藻属下的一个单细胞红色绿藻门物种,具光合作用 能力,常见于世界各地如极地或高山山脉的雪原(英语:snowfield)。这些绿藻是西瓜雪形成的其
  • 花园葱蜗牛花园葱蜗牛(学名:Cepaea hortensis)是一种中等大小的有肺类蜗牛。花园葱蜗牛的壳最宽阔处有2厘米。壳的颜色及条纹各有不同,不过一般都是黄色的,其上有褐色的斑纹。它们的特征是
  • 温德尔·斯坦利温德尔·梅雷迪思·斯坦利(英语:Wendell Meredith Stanley,1904年8月16日-1971年6月15日),出生于印第安纳州里奇维尔,美国化学家,1946年获诺贝尔化学奖。1901年:范托夫 | 1902年:费歇
  • ClFsub5/sub五氟化氯(Chlorine pentafluoride)化学式为ClF5,是氟和氯的化合物,首次合成于1963年。它具有C4v对称性的四方锥结构已经被高清晰度的19F核磁共振所证实。最初,一种常用于合成这种