首页 >
关孝和
✍ dations ◷ 2025-04-25 19:07:13 #关孝和
关孝和(1642年-1708年12月5日),又名新助,字子豹,号自由亭,是日本江户时代的数学家。关孝和在日本数学史上有重要地位,是数学流派“关流”的开山鼻祖,被日本人称为“算圣”。他的主要贡献包括发展了笔算代数“傍书法”,提出方程组求解理论并发展出行列式、判别式等概念,建立有关圆弧和球的几何问题的理论(后来被称为“圆理”)等等。主要著作有《发微算法》、《括要算法》(死后由弟子出版)、《三部抄》、《七部书》(弟子间秘密流传)等等。关孝和出身武士家庭。父亲内山永明,本姓安间,与养父同为骏河大纳言德川忠长属下任职。1632年,大纳言被幽禁在上野国高崎,内山永明也到上野国隐居。1639年,又被召到江户供职,全家移居江户。关孝和原来姓内山,后来被过继到一个叫做关五郎左卫门的武士家中,因而改姓。关孝和在孩童时候就表现出超人的数学天赋,被称为神童。长大后,他继承关氏家业,曾在甲府宰相德川纲重与其子德川纲丰家做过勘定吟味床役(相当于会计检查官),掌管财赋。1704年12月,德川纲丰成为第五代幕府将军德川纲吉的养子而进江户城的西之丸,孝和也因此成为幕府直属的武士,官至御纳户组头,直到1706年11月退休。1708年10月24日,关孝和病逝,葬于江户的牛込七轩寺町净轮寺.谥号法行院宗达日心居士。关孝和的数学著作有近二十本,但大都在1685年之前写成。他生前发表的著作只有一部《发微算法》。他的学术成就主要有“傍书法”、演段术、行列式、“零约术”、圆理等。关孝和在他的《三部抄》中阐述了“傍书法”和演段术。“傍书法”是用来表示方程的方法。关孝和把未知数用甲乙来表示,把系数和加减乘除运算标在未知数的旁边。这样可以简洁地表示方程或方程组。以“傍书法”为基础,关孝和介绍了一系列解方程和方程组的算法,并称之为“天元演段术”,之后又归纳为“归原整法”。后来的“关流”弟子称这种方法为“点窜法”。在《三部抄》的最后一部《解伏题之法》中,关孝和研究了各类代数方程与方程组的解法。他使用将方程组中不同方程乘以不同的系数或算式后相减的方法来消去未知数,得到一元的(高次)方程,然后求数值解。其中主要有略、省、约、缩、叠、括六种方法。“略”是指将一个方程乘以一个算式后从另一方程中减去;“省”是指将一个方程的各项中的公因式约去;“约”是指将一个方程的各项中的公约数约去;“缩”则是指当两个方程中都只有未知数
x
{displaystyle x}
的偶数次幂时,用未知数的平方
x
{displaystyle x}
代替
x
2
{displaystyle x^{2}}
,得到次数较低的方程的方法;“叠”是指将两个方程分别乘以一个算式再相减以消去某些项;“括”是把未知数的相同幂次的系数合起来,即合并同类项。做这样的消元法时,关孝和只将方程的系数纵横写成方阵的形式,实际上就是行列式。关孝和还提出了两种计算行列式的值的方法:逐式交乘法和交式斜乘法。关孝和创立的求曲线长度、曲边图形面积或立体体积的方法被后来的和算家称为圆理。其研究主要记载在《括要算法》的第四卷中。其中包括“求圆周率术”、“求弧矢弦率术”和“求立圆积率术”。关孝和曾经求得圆周率的小数点后11位小数,但他无法确定其准确度。求弧长时关孝和建立了类似牛顿插值公式的方法,可以说是和牛顿差不多时间发现了这一公式。此外,他还通过“増约术”求得球体的体积公式。关孝和是一个杰出的教育家,曾经师从于他的有数百人。其中,最突出的有荒木村英及建部贤弘、建部贤明两兄弟。关孝和的弟子构成了一个庞大的数学流派——关流。
相关
- 免疫豁免免疫豁免(英语:Immune privilege)在免疫学中是指由于解剖和免疫屏障的存在,有些自身抗原位于免疫豁免部位,自身反应性淋巴细胞不能接触到它们。如果屏障遭到破坏,自身抗原暴露,就能
- 镍铁电池镍铁电池是众多充电电池中的一种,它的阳极是氢氧化镍,阴极是铁,电解质(电解液)是氢氧化钾。这种电池的电压通常是1.2V。它很耐用,能够经受一定程度的使用事故(包括过度充电、过度
- 约翰·奥斯丁约翰·奥斯丁(英语:John Langshaw Austin,著作常署名 J. L. Austin,1911年3月26日-1960年2月8日)英国哲学家,属于分析哲学学派,以语言哲学为专长。1929年开始在牛津大学贝利奥尔学院
- 能斯特瓦尔特·赫尔曼·能斯特(德语:Walther Hermann Nernst,1864年6月25日-1941年11月18日),德国化学家,他提出了热力学第三定律,这条定律对化学亲和力的计算尤其重要,他因此荣获1920年度
- 冰河冰川(Glacier)是指大量冰块堆积形成如同河川般的地理景观。是一巨大的流动固体,是在高寒地区由层层积雪堆叠而成的巨大冰川冰。在终年冰封的高山或两极地区,多年的积雪经重力或
- 莱斯特郡莱斯特郡(英语:Leicestershire,英文简称:Leics,读音: .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Co
- 文艺春秋株式会社文艺春秋(日语:株式會社文藝春秋,英语:Bungeishunju Ltd.)是一家总部位于东京都千代田区的日本出版社。1923年1月,菊池宽创立文艺春秋社。1946年3月,因参与“战争协力”而
- 庆妃庆妃(1840年-1885年)张氏,汉军旗内务府园户之女,御苑苑户之孙女。清朝咸丰帝之妃。道光二十年(1840年)十月初一日出生,家族基本都在御苑和御园里工作,没有一个当官的人。张氏有一个为
- 宁州云南政权宁州,中国古代州名。西晋置。刺史镇建宁郡。初置时领四郡,其地大致相当于今云南省除迪庆、昭通以外的大部分地区。东晋、南朝宋、齐时辖有今云南省全境、贵州省中西部
- 镧系镧系元素是第57号元素镧到71号元素镥(或镥)共15种元素的统称。镧系元素也属于过渡元素,只是镧系元素的外层和次外层的电子构型基本相同,新增加的电子则大都填入了从外侧数第三个