空间对称群

✍ dations ◷ 2025-11-19 18:21:20 #几何学,对称,群论

一个对象(如一维、二维或三维中的图像或信号)的对称群是指在复合函数运算下不变的所有等距同构所构成的群。其为所考虑之空间的等距同构群中的一个子群。

(若没有另外注明,则本文只考虑在欧几里得空间内的对称群,但此一概念亦可以被应用在更广义的用途上,详见下文。)

“对象”可以是几何形状、图像及模式,如壁纸图样(英语:Wallpaper group)。其定义能够以详述图像或模式的方式,如将位置附上一组颜色的值的函数,来使其更为精确。对如三维物体的对称,可能亦会想要考量其物理上可能的组合。空间中等距同构的群可以产生一个作用于此群本身对象上的群作用。

对称群有时亦称为全对称群,以强调其会产生一个图像不会改变的反转定位之等距同构(如镜射、滑移镜射(英语:Glide reflection)和不纯旋转)。会保留其定位之同距同构(如平移、旋转和此两者的组合)的子群则称为其纯对称群。一对象的纯对称群若等同于其全对称群,则称此对象为对掌的(也因此不存在使其不变的反转定位之等距同构。)

任何其元素有着相同个不动点的对称群都可以由选定其原点为不动点来被表示成一个正交群O(n)的子群,其对所有的有限对称群及有界图像之对称群皆为真的。

离散对称群可以分成三种类型:

另外亦有着包含任意小角度的旋转或任意小距离的平移之“连续”对称群。一个球面O(3)的所有对称所组成的群即是一种连续对称群,而通常如此类的连续对称的群是在李群中所研究的对象。对欧几里得群子群的分类会对应到对称群的分类。

两个几何形状被认为是有着相同的对称型,若其对称群为欧几里得群(英语:Euclidean group)()(Rn的等距同构群)的共轭群,其中一个群的两个子群12为共轭的,若存在一内的元素能使得1=g-12。例如:

有时,“相同对称型”更广义的概念会被使用,而可以产生如17个壁纸群之类的类型。

当考虑等距同构群时,可以将其缩限在于等距同构下之图像的点皆为拓扑闭合的。如此便排除了如一维中以有理数之距离平移所构成的群。一个具有对称群的“图像”是不可伸缩的,且即使达到任意详尽的均匀,亦不会有真正的均匀。

其在等同构下之图像的点皆为拓扑闭合之一维等距同构群有:

另见一维对称群(英语:symmetry groups in one dimension)。

以共轭来分,二维离散点群可以分成下列几种类型:

1是一个只包含有恒等运算的当然群,其产生于一图像没有任何的对称时,如字母F。2为字母Z的对称群,3为三曲腿图的,4为卐的,而56则为有五条及六条臂之类卐图像。

1为一个含有恒等运算和单一个镜射之两个元素的群,其产生于一尽有一对称轴的图像中,如字母A。2(同构于克莱因四元群)为一非等边长方形的对称群,而34则为正多边形的对称群。

两种类型的实际对称群对其旋转中心都有着两个自由度,而在二面体群中,多著一个镜面方位的自由度。

剩余具有不动点之二维等距同构群,其所有在等距同构下之图像的点皆为拓扑闭合的有:

对于无界图像,其他的等距同构群还包括平移;其闭合对称群有:

以共轭来分,其三维点群的集合包括7种包含无限多个群的类型和剩下的7个点群。在晶格学中,其被局限在需符合晶格的离散平移对称中。一般无限个点群中的晶体局限可以找出32种晶体点群(27种在7种类型中,5种在另7个点群中)。

见三维点群(英语:Point groups in three dimensions)。

具一固定点的连续对称群包括如下:

对对象和标量场而言,圆柱对称意指其有着直立镜射面。但对向量场则不然:在相对于某一轴的圆柱坐标中, A = A ρ ρ ^ + A ϕ ϕ ^ + A z z ^ {\displaystyle \mathbf {A} =A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}{\boldsymbol {\hat {z}}}}

对于球面对称,则不存在着如此差异,其皆意指著有镜射面。

没有固定点的连续对称群则包括具有如无限螺旋之螺旋轴(英语:screw axis)对称的对称群。另见欧几里得群的子群。

在更广义的文句中,对称群可能为任一种类的变换群或自同构群。一旦知道了所关注的数学结构之种类,应该就够确定保留其结构之映射。相反地,知道其对称即可定义其结构,或至少能弄清其内之不变量;这是看爱尔兰根纲领的一种方式。

例如,有限几何某些模型的自同构群在一般意思下不是“对称群”,尽管其亦会保留对称性。其保留着点集族,而非点集(或“对象”)本身。见pattern groups。

如上面所述,空间自同构的群会形成一于其内对象之群作用。

对于一给定之几何空间内的一给定之几何形状,考虑如下之等价关系:两个空间自同构为等价的当且仅当两个形状的图样是相同的(此处所谓之“相同”并非为“在平移和旋转下是相同”的意思,而是指“精确地相同”)。然后,此一相同之等价类即为此形状的对称群,且每一等价类皆会对应到一个此形状的同构版本。

在每一对等价类之间都存在着一个双射:第一个等价类之代表的逆元素与第二个等价类之代表复合。

在整个空间的一有限自同构群里,其目为形状之对称群的目乘上此形状同构版本的数目。

例如:

比较拉格朗日定理 (群论)及其证明。

相关

  • 恶病质恶病体质(Cachexia)代表因疾病引起的体重减轻以及肌肉量减少,呈现衰落的状态,通常为癌症或艾滋病等严重疾病引起的并发症。
  • 布鲁斯特·卡利布鲁斯特·卡利(Brewster Kahle /ˈkeɪl/ KAYL-'; 1960年-) 是一位美国数字图书馆员、电脑工程师和资讯科技企业家,是Alexa Internet和互联网档案馆的创始人。 2012年入选互联网
  • 英联邦英联邦(英语:Commonwealth of Nations),是一个由54个主权国家(包括属地)所组成的国际组织,成员大多为前英国殖民地或者保护国。英联邦元首为伊丽莎白二世女王,同时身兼包括英国在内
  • 内流河河流(江、河、江河、河道,古称水、川、河川,局地称溪、港、郭勒、沐沦、曲、藏布等)是自然汇入海洋、湖泊的流水,通常为淡水。在少数情况下,河流流入地下或者在汇入另一水体之前便
  • 劳拉·卡芙特劳拉·克罗夫特(英语:Lara Croft,港台译作“萝拉·卡芙特”,中国大陆又译作“劳拉·克劳馥”)是Eidos Interactive(现史克威尔艾尼克斯)的动作冒险游戏《古墓丽影》的主角。由托比
  • 小斑虎猫小斑虎猫(Leopardus tigrinus)是虎猫及长尾虎猫的近亲。它们栖息在中美洲及南美洲的热带雨林。它们是夜间活动的,猎食啮齿目及鸟类。它们体长约40-50厘米,尾巴长30-40厘米。虽然
  • 芝加哥大都市区芝加哥大都市区(英语:Chicago metropolitan area)是指范围包括美国伊利诺伊州芝加哥市及其郊外的大都市区。芝加哥大都市区的定义并不统一,按照美国行政管理和预算局的定义,芝加
  • 2019冠状病毒病格陵兰疫情2019冠状病毒病格陵兰疫情,介绍在2019新型冠状病毒疫情中,在格陵兰发生的情况。2020年3月16日,格陵兰首府努克确诊首例新冠肺炎病例,患者已在家隔离。格陵兰总理金·基尔森于新
  • 副黏液病毒科副粘液病毒科包括二个亚科,副粘液病毒亚科(Paramyxivirinae)及肺炎病毒亚科(Pneumovirinae)。副粘液病毒亚科除已归类六属病毒外,还有尚未归类之马麻疹病毒属(Equine Morbilli
  • 西里尔·欣谢尔伍德西里尔·诺曼·欣谢尔伍德爵士,OM(英语:Sir Cyril Norman Hinshelwood,1897年6月19日-1967年10月9日),英国化学家,因化学反应动力学方面的研究与尼古拉·谢苗诺夫一起获得1956年的诺