空间对称群

✍ dations ◷ 2025-04-02 17:55:08 #几何学,对称,群论

一个对象(如一维、二维或三维中的图像或信号)的对称群是指在复合函数运算下不变的所有等距同构所构成的群。其为所考虑之空间的等距同构群中的一个子群。

(若没有另外注明,则本文只考虑在欧几里得空间内的对称群,但此一概念亦可以被应用在更广义的用途上,详见下文。)

“对象”可以是几何形状、图像及模式,如壁纸图样(英语:Wallpaper group)。其定义能够以详述图像或模式的方式,如将位置附上一组颜色的值的函数,来使其更为精确。对如三维物体的对称,可能亦会想要考量其物理上可能的组合。空间中等距同构的群可以产生一个作用于此群本身对象上的群作用。

对称群有时亦称为全对称群,以强调其会产生一个图像不会改变的反转定位之等距同构(如镜射、滑移镜射(英语:Glide reflection)和不纯旋转)。会保留其定位之同距同构(如平移、旋转和此两者的组合)的子群则称为其纯对称群。一对象的纯对称群若等同于其全对称群,则称此对象为对掌的(也因此不存在使其不变的反转定位之等距同构。)

任何其元素有着相同个不动点的对称群都可以由选定其原点为不动点来被表示成一个正交群O(n)的子群,其对所有的有限对称群及有界图像之对称群皆为真的。

离散对称群可以分成三种类型:

另外亦有着包含任意小角度的旋转或任意小距离的平移之“连续”对称群。一个球面O(3)的所有对称所组成的群即是一种连续对称群,而通常如此类的连续对称的群是在李群中所研究的对象。对欧几里得群子群的分类会对应到对称群的分类。

两个几何形状被认为是有着相同的对称型,若其对称群为欧几里得群(英语:Euclidean group)()(Rn的等距同构群)的共轭群,其中一个群的两个子群12为共轭的,若存在一内的元素能使得1=g-12。例如:

有时,“相同对称型”更广义的概念会被使用,而可以产生如17个壁纸群之类的类型。

当考虑等距同构群时,可以将其缩限在于等距同构下之图像的点皆为拓扑闭合的。如此便排除了如一维中以有理数之距离平移所构成的群。一个具有对称群的“图像”是不可伸缩的,且即使达到任意详尽的均匀,亦不会有真正的均匀。

其在等同构下之图像的点皆为拓扑闭合之一维等距同构群有:

另见一维对称群(英语:symmetry groups in one dimension)。

以共轭来分,二维离散点群可以分成下列几种类型:

1是一个只包含有恒等运算的当然群,其产生于一图像没有任何的对称时,如字母F。2为字母Z的对称群,3为三曲腿图的,4为卐的,而56则为有五条及六条臂之类卐图像。

1为一个含有恒等运算和单一个镜射之两个元素的群,其产生于一尽有一对称轴的图像中,如字母A。2(同构于克莱因四元群)为一非等边长方形的对称群,而34则为正多边形的对称群。

两种类型的实际对称群对其旋转中心都有着两个自由度,而在二面体群中,多著一个镜面方位的自由度。

剩余具有不动点之二维等距同构群,其所有在等距同构下之图像的点皆为拓扑闭合的有:

对于无界图像,其他的等距同构群还包括平移;其闭合对称群有:

以共轭来分,其三维点群的集合包括7种包含无限多个群的类型和剩下的7个点群。在晶格学中,其被局限在需符合晶格的离散平移对称中。一般无限个点群中的晶体局限可以找出32种晶体点群(27种在7种类型中,5种在另7个点群中)。

见三维点群(英语:Point groups in three dimensions)。

具一固定点的连续对称群包括如下:

对对象和标量场而言,圆柱对称意指其有着直立镜射面。但对向量场则不然:在相对于某一轴的圆柱坐标中, A = A ρ ρ ^ + A ϕ ϕ ^ + A z z ^ {\displaystyle \mathbf {A} =A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}{\boldsymbol {\hat {z}}}}

对于球面对称,则不存在着如此差异,其皆意指著有镜射面。

没有固定点的连续对称群则包括具有如无限螺旋之螺旋轴(英语:screw axis)对称的对称群。另见欧几里得群的子群。

在更广义的文句中,对称群可能为任一种类的变换群或自同构群。一旦知道了所关注的数学结构之种类,应该就够确定保留其结构之映射。相反地,知道其对称即可定义其结构,或至少能弄清其内之不变量;这是看爱尔兰根纲领的一种方式。

例如,有限几何某些模型的自同构群在一般意思下不是“对称群”,尽管其亦会保留对称性。其保留着点集族,而非点集(或“对象”)本身。见pattern groups。

如上面所述,空间自同构的群会形成一于其内对象之群作用。

对于一给定之几何空间内的一给定之几何形状,考虑如下之等价关系:两个空间自同构为等价的当且仅当两个形状的图样是相同的(此处所谓之“相同”并非为“在平移和旋转下是相同”的意思,而是指“精确地相同”)。然后,此一相同之等价类即为此形状的对称群,且每一等价类皆会对应到一个此形状的同构版本。

在每一对等价类之间都存在着一个双射:第一个等价类之代表的逆元素与第二个等价类之代表复合。

在整个空间的一有限自同构群里,其目为形状之对称群的目乘上此形状同构版本的数目。

例如:

比较拉格朗日定理 (群论)及其证明。

相关

  • 伪真菌总门伪真菌总门(Pseudofungi)是一个不等鞭毛类的子类群,又被称为丝壶菌总门(Heterokontimycotina) ,由卵菌纲和丝壶菌纲组成。虽然它们的生长形式(菌丝)和营养模式类似于真菌,但大量的生
  • 质子泵抑制剂质子泵抑制剂(英语:Proton-pump inhibitor、缩写为PPI)或称氢离子帮浦阻断剂,是一种抑制氢离子泵的药物,这种药物对于减少胃酸分泌的作用是显著也长效的,可以说是现今减少胃酸分泌
  • 边缘系统边缘系统(Limbic system)指包含海马体及杏仁体在内,支援多种功能例如情绪、行为及长期记忆的大脑结构。这种被描述为边缘系统的脑部结构与嗅觉结构相近。术语“limbic”源自拉
  • 林佑星张晏菻(2013年结婚 2016年离婚) 小妏 (2019年结婚)林佑星(1974年9月6日-),是台湾男演员。早期曾参与中视、华视、民视等连续剧的演出,目前是台湾三立台湾台的主要演
  • 马塔伊万加瑞·马塔伊(斯瓦希里语:Wangari Muta Maathai,1940年4月1日-2011年9月25日),肯尼亚的社会活动家,2004年诺贝尔和平奖得主,美国匹兹堡大学生物科学硕士。她是绿带运动和非洲减债
  • 咨询咨询(英语:Consultation)的定义是透过一个助人专业服务的过程,去协助被咨询者处理个案系统的相关工作或者是管理上的问题,其目标是利用某些特殊的方式来帮助被咨询者与个案系统。
  • 促效剂激动剂(或称:刺激剂/促进剂/激活剂)(英语:agonist)是与受体结合并使之激活,产生生理反应的化合物。激动剂按来源分为内源激动剂和外源(英语:exogenous)激动剂,按效能分为完全激动剂、超
  • 小卡尔·林奈小卡尔·林奈(Carl Linnaeus the Younger、Carl von Linné、Carolus Linnaeus the Younger、Linnaeus filius,1741年1月20日-1783年11月1日)为瑞典自然学家。其为卡尔·林奈的
  • 保鲜纸保鲜膜,是一种塑胶薄膜,作为厨房用品,保鲜膜可阻隔水分,防止空气与食物直接接触,主要用于厨房煮食、盛载食物、保存食物,或用来制作一些可以简单清洁的物料。它的用途越来越广泛,因
  • 蒲泽春蒲泽春(1956年7月7日-),中华民国海军二级上将,生于台湾桃园县杨梅乡埔心,籍贯青海省,现居桃园市龙潭区,现任总统府战略顾问,曾任国防部副部长、副参谋总长执行官、海军副司令及张凤强