空间对称群

✍ dations ◷ 2025-07-08 17:04:54 #几何学,对称,群论

一个对象(如一维、二维或三维中的图像或信号)的对称群是指在复合函数运算下不变的所有等距同构所构成的群。其为所考虑之空间的等距同构群中的一个子群。

(若没有另外注明,则本文只考虑在欧几里得空间内的对称群,但此一概念亦可以被应用在更广义的用途上,详见下文。)

“对象”可以是几何形状、图像及模式,如壁纸图样(英语:Wallpaper group)。其定义能够以详述图像或模式的方式,如将位置附上一组颜色的值的函数,来使其更为精确。对如三维物体的对称,可能亦会想要考量其物理上可能的组合。空间中等距同构的群可以产生一个作用于此群本身对象上的群作用。

对称群有时亦称为全对称群,以强调其会产生一个图像不会改变的反转定位之等距同构(如镜射、滑移镜射(英语:Glide reflection)和不纯旋转)。会保留其定位之同距同构(如平移、旋转和此两者的组合)的子群则称为其纯对称群。一对象的纯对称群若等同于其全对称群,则称此对象为对掌的(也因此不存在使其不变的反转定位之等距同构。)

任何其元素有着相同个不动点的对称群都可以由选定其原点为不动点来被表示成一个正交群O(n)的子群,其对所有的有限对称群及有界图像之对称群皆为真的。

离散对称群可以分成三种类型:

另外亦有着包含任意小角度的旋转或任意小距离的平移之“连续”对称群。一个球面O(3)的所有对称所组成的群即是一种连续对称群,而通常如此类的连续对称的群是在李群中所研究的对象。对欧几里得群子群的分类会对应到对称群的分类。

两个几何形状被认为是有着相同的对称型,若其对称群为欧几里得群(英语:Euclidean group)()(Rn的等距同构群)的共轭群,其中一个群的两个子群12为共轭的,若存在一内的元素能使得1=g-12。例如:

有时,“相同对称型”更广义的概念会被使用,而可以产生如17个壁纸群之类的类型。

当考虑等距同构群时,可以将其缩限在于等距同构下之图像的点皆为拓扑闭合的。如此便排除了如一维中以有理数之距离平移所构成的群。一个具有对称群的“图像”是不可伸缩的,且即使达到任意详尽的均匀,亦不会有真正的均匀。

其在等同构下之图像的点皆为拓扑闭合之一维等距同构群有:

另见一维对称群(英语:symmetry groups in one dimension)。

以共轭来分,二维离散点群可以分成下列几种类型:

1是一个只包含有恒等运算的当然群,其产生于一图像没有任何的对称时,如字母F。2为字母Z的对称群,3为三曲腿图的,4为卐的,而56则为有五条及六条臂之类卐图像。

1为一个含有恒等运算和单一个镜射之两个元素的群,其产生于一尽有一对称轴的图像中,如字母A。2(同构于克莱因四元群)为一非等边长方形的对称群,而34则为正多边形的对称群。

两种类型的实际对称群对其旋转中心都有着两个自由度,而在二面体群中,多著一个镜面方位的自由度。

剩余具有不动点之二维等距同构群,其所有在等距同构下之图像的点皆为拓扑闭合的有:

对于无界图像,其他的等距同构群还包括平移;其闭合对称群有:

以共轭来分,其三维点群的集合包括7种包含无限多个群的类型和剩下的7个点群。在晶格学中,其被局限在需符合晶格的离散平移对称中。一般无限个点群中的晶体局限可以找出32种晶体点群(27种在7种类型中,5种在另7个点群中)。

见三维点群(英语:Point groups in three dimensions)。

具一固定点的连续对称群包括如下:

对对象和标量场而言,圆柱对称意指其有着直立镜射面。但对向量场则不然:在相对于某一轴的圆柱坐标中, A = A ρ ρ ^ + A ϕ ϕ ^ + A z z ^ {\displaystyle \mathbf {A} =A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}{\boldsymbol {\hat {z}}}}

对于球面对称,则不存在着如此差异,其皆意指著有镜射面。

没有固定点的连续对称群则包括具有如无限螺旋之螺旋轴(英语:screw axis)对称的对称群。另见欧几里得群的子群。

在更广义的文句中,对称群可能为任一种类的变换群或自同构群。一旦知道了所关注的数学结构之种类,应该就够确定保留其结构之映射。相反地,知道其对称即可定义其结构,或至少能弄清其内之不变量;这是看爱尔兰根纲领的一种方式。

例如,有限几何某些模型的自同构群在一般意思下不是“对称群”,尽管其亦会保留对称性。其保留着点集族,而非点集(或“对象”)本身。见pattern groups。

如上面所述,空间自同构的群会形成一于其内对象之群作用。

对于一给定之几何空间内的一给定之几何形状,考虑如下之等价关系:两个空间自同构为等价的当且仅当两个形状的图样是相同的(此处所谓之“相同”并非为“在平移和旋转下是相同”的意思,而是指“精确地相同”)。然后,此一相同之等价类即为此形状的对称群,且每一等价类皆会对应到一个此形状的同构版本。

在每一对等价类之间都存在着一个双射:第一个等价类之代表的逆元素与第二个等价类之代表复合。

在整个空间的一有限自同构群里,其目为形状之对称群的目乘上此形状同构版本的数目。

例如:

比较拉格朗日定理 (群论)及其证明。

相关

  • 病原体病原体(希腊语:πάθος pathos “痛苦”、“热情” 与 -γενής -genēs “生产者”),在生物学中,从最古老和最广泛的意义上说,就是任何可以产生疾病的事物。病原体也可以称
  • 科学科学(词源为拉丁文“scientia”,意为“知识”)是一种系统性的知识体系,它积累和组织并可检验有关于宇宙的解释和预测。科学强调预测结果的具体性和可证伪性,这有别于空泛的哲学。
  • 死亡行军死亡行军 是一个针对战俘或其他俘虏或被驱逐出境者的强迫行军,旨在令他们死在途中,这就把它们从一般单纯的用徒步行军去运送囚犯区分出来。死亡行军通常包含严苛的体力劳动和
  • 核糖核苷酸还原酶核糖核苷酸还原酶 (英文:Ribonucleotide reductase.(RNR), 别称为 核糖核苷二磷酸还原酶) 他是一个酵素,功能为把核苷酸催化为脱氧核糖核苷酸. 脱氧核糖核苷酸常被使用于DNA
  • 西弗兰克西法兰克王国(法语:Francie occidentale)为西欧的一个君主制国家,存在时间为843年至987年。843年,法兰克国王虔诚者路易的三个儿子,洛泰尔、日耳曼人路易及秃头查理签署《凡尔登条
  • ETtoday 东森新闻云ETtoday新闻云为台湾社群新闻网站,由东森新媒体控股股份有限公司经营。该网站前身为2000年至2008年3月的《东森新闻报》。2008年4月,《东森新闻报》被转售予中华联合电讯集团(
  • 中国酒饮酒是中国上古祭祀典礼之一,第一个造酒或发明酒的人已不可考,有仪狄与杜康两说,后世多将杜康尊为酒神,造酒业也奉杜康为祖师爷,在文学中杜康两字也成为酒的代名词。中国古代的酒
  • 德世库德世库(1521年-1566年),生于佛阿拉城,后迁至赫图阿拉城。建州女真都督福满长子。与兄弟合称“六贝勒”。德世库婚后居于觉尔察城,后因不满四弟觉昌安继承祖业,而反对觉昌安,并与同族
  • 彗星舰上轰炸机D4Y彗星俯冲轰炸机(日语:すいせい)乃九九式舰上轰炸机的后继机型,盟军代号“Judy”。日本帝国海军在1936年退出伦敦海军条约,开始加紧备战进度,然而长期以来受到限制的军舰总量无
  • 赵小锐赵小锐(1956年7月28日-),中国男演员,1978年考入中国青年艺术剧院作为话剧演员,因出演《水浒传》的李逵为观众熟知。代表作电影《少林俗家弟子》、《一个和八个》的大秃子、电视剧