润德勒坐标

✍ dations ◷ 2025-02-23 21:32:51 #相对论,加速度

相对论中,“双曲加速参考系”坐标构成了平直闵可夫斯基时空中重要且有用的坐标卡系统。狭义相对论中,一均匀加速的物体进行所谓的双曲运动(英语:hyperbolic motion (relativity));在其固有参考系中,该物体是静止的。这现象可与均匀重力场相应。关于平直时空中之加速度的一般性论述,参见狭义相对论中的加速度。

本文中,光速定义为 = 1,惯性坐标系为,双曲坐标系则为。这类双曲坐标系可主要分为两大类,与加速观察者位置有关:若观察者时间 = 0时位在 = 1/α(其中α为常数值的固有加速度,由共动的加速规测得),则双曲坐标系称为“润德勒坐标”(或译林德勒坐标;英语:Rindler coordinates),与之相应的是“润德勒度规”(Rindler metric)若观察者时间 = 0时位在 = 0,则双曲坐标系有时称为“穆勒坐标”(Møller coordinates)或“寇特勒-穆勒坐标”(Kottler-Møller coordinates),与之相应的是“寇特勒-穆勒度规”(Kottler-Møller metric)。透过采用雷达坐标,可得到一常与双曲运动观察者有关的替代坐标卡(Chart)。雷达坐标有时也称作“拉斯坐标”(Lass coordinates) 寇特勒-穆勒坐标以及拉斯坐标也常标示为润德勒坐标。

关于润德勒坐标的历史,这样的坐标系在狭义相对论发表不久后即被引入,在研究双曲运动此一概念的同时也被研究:与平直闵可夫斯基时空的关系如阿尔伯特·爱因斯坦(1907年,1912年)、马克斯·玻恩(1909年)、阿诺·索末菲(1910年)、马克斯·冯·劳厄(1911年)、亨德里克·洛伦兹(1913年)、弗里德里希·寇特勒(英语:Friedrich Kottler)(1914年)、沃夫冈·泡利(1921年)、Karl Bollert(1922年)、Stjepan Mohorovičić(1922年)、乔治·勒梅特(1924年)、爱因斯坦与纳森·罗森(1935年)、Christian Møller(1943年,1952年)、Fritz Rohrlich(1963年)、哈利·拉斯(英语:Harry Lass)(1963年);与广义相对论中平直或弯曲时空的关联性:沃夫冈·润德勒(1960年,1966年)。

以沿 X {\displaystyle X} -direction方向、常数值固有加速度 α {\displaystyle \alpha } 进行双曲运动的物体,其世界线为固有时 τ {\displaystyle \tau } 以及快度 α τ {\displaystyle \alpha \tau } 的函数,关系式为:

其中 x = 1 / α {\displaystyle x=1/\alpha } 为常数, α τ {\displaystyle \alpha \tau } 为变数。这样的世界线形态为双曲线 X 2 T 2 = x 2 {\displaystyle X^{2}-T^{2}=x^{2}} 。阿诺·索末菲展示了此方程组可重新表示为: x {\displaystyle x} 为变数,而 α τ {\displaystyle \alpha \tau } 为常数;如此可表现出共动观察者所测量到双曲运动物体的“静止型态”。设定 τ = t {\displaystyle \tau =t} ,也就是采用了观察者的固有时作为整体双曲加速参考系的时间,则惯性坐标与双曲坐标之间的转换式变为:

T = x sinh ( α t ) , X = x cosh ( α t ) , Y = y , Z = z {\displaystyle T=x\sinh(\alpha t),\quad X=x\cosh(\alpha t),\quad Y=y,\quad Z=z}

 

 

 

 

(1a)

逆转换式为:

对其微分并代入闵可夫斯基度规 d s 2 = d T 2 + d X 2 + d Y 2 + d Z 2 {\displaystyle ds^{2}=-dT^{2}+dX^{2}+dY^{2}+dZ^{2}} ,则双曲加速系的度规张量为

d s 2 = ( α x ) 2 d t 2 + d x 2 + d y 2 + d z 2 {\displaystyle ds^{2}=-(\alpha x)^{2}dt^{2}+dx^{2}+dy^{2}+dz^{2}}

 

 

 

 

(1b)

引用错误:在<references>标签中name属性为“Møller”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Desloge”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Dolby”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Pauri”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Koks”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Blum”的参考文献没有在文中使用

相关

  • 泡菜泡菜古称葅(zū),是指为了利于长时间存放而经过发酵的蔬菜。一般来说,只要是纤维丰富的蔬菜或水果,都可以被制成泡菜;像是卷心菜、大白菜、红萝卜、白萝卜、大蒜、青葱、小黄瓜、
  • 蓝婴症青紫婴儿(blue baby),或称为发绀婴儿、蓝婴,是指婴儿因先天性心脏缺损或后天性缺氧,血含氧量较正常人低,造成发绀现象。因患儿身体呈蓝紫色而得名。青紫型先天性心脏病包括:Templat
  • 认知疗法认知行为治疗(英语:Cognitive Behavioral Therapy,简称 CBT)是一种心理治疗的取向、一种谈话治疗,以目标导向与系统化的程序,解决丧失功能的情绪、行为与认知问题。不同的治疗方式
  • 竹荪属长裙竹荪(学名:Phallus indusiatus),俗称竹荪,又名竹笙、竹参(ㄕㄣ)、面纱菌、网纱菌、竹姑娘等,是寄生在枯竹根部的一种隐花菌类,菌裙和菌柄在中国为高级的素食材料。竹荪原来有自己
  • 北爱尔兰问题政府安全部队  英国爱尔兰共和派阿尔斯特保皇派英国陆军:705RUC: 301NIPS(英语:Northern Ireland Prison Service):24TA:7其他英国警察:6皇家空军:4皇家海军:2(总计:1,049)北爱尔兰问题
  • 洪 波洪波(1959年11月-),山东宁津人,汉族,中国共产党党员‎。中华人民共和国政治人物、第十三届全国人民代表大会福建省代表。2018年,洪波被选为福建省出席第十三届全国人民代表大会代表
  • 茅茅起义大英帝国1953年1954年1956年1959年茅茅起义(英语:Mau Mau Uprising、Mau Mau Revolt),又译矛矛起义、毛毛起义、茂茂起义,英国称为肯尼亚紧急状态(Kenya Emergency)、茅茅叛乱( Mau
  • 莎菲·戈德瓦塞尔卡内基梅隆大学(理学学士) 1979年 莎弗莉拉·“莎菲”·戈德瓦塞尔 (英语:Shafrira Goldwasser,希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font
  • 丹·布卡廷斯基丹·布卡廷斯基(英语:Dan Bucatinsky,1965年9月22日-)是美国的一位演员、作家和制作人。他在电视剧丑闻中出演James Novak角色。他出生在纽约的一个犹太人家庭。
  • 党同伐异《党同伐异》(英语:Intolerance: Love's Struggle Through the Ages,1920年中国上海上映时片名译为《专制毒》)是一部1916年由大卫·格里菲斯执导的美国默片,被视为默片时代最伟