首页 >
正八面体
✍ dations ◷ 2025-04-25 10:06:09 #正八面体
正八面体是一种八面体,由八个等边三角形,分别为上、下各四个三角形与一个正方形组成的正方锥体,上下黏合在一起而构成,是五种正多面体的第三种,有6个顶点和12条边。正八面体也是正三角反棱柱。正八面体是三维的正轴形,施莱夫利符号{3,4},考克斯特—迪肯符号(英语:Coxeter-Dynkin diagram)。正八面体每四条棱可以成为一个正方形,共有三个独立的正方形。以棱长为√2的正八面体的几何中心作为原点,将正八面体的对角线作为x,y,z轴建立三维直角坐标系(正八面体的3条对角线两两正交,这也是正八面体被叫做“正轴形”的原因),则我们能将正八面体的顶点坐标记为
( ±1, 0, 0 )
( 0, ±1, 0 )
( 0, 0, ±1 )
正八面体表面方程为:
|x|+|y|+|z|=1
更一般的,如果正八面体的对角线平行于坐标轴,中心为(x0,y0,z0),外接圆半径为r(棱长为(√2)r),则正八面体表面方程为:
|x-x0|+|y-y0|+|z-z0|=r
如果中心在原点的正八面体被拉长,成为菱形体,则更一般的八面体方程为
|
x
x
m
|
+
|
y
y
m
|
+
|
z
z
m
|
=
1
{displaystyle left|{frac {x}{x_{m}}}right|+left|{frac {y}{y_{m}}}right|+left|{frac {z}{z_{m}}}right|=1}
其内接于椭球体
x
2
x
m
2
+
y
2
y
m
2
+
z
2
z
m
2
=
1
{displaystyle {frac {x^{2}}{x_{m}^{2}}}+{frac {y^{2}}{y_{m}^{2}}}+{frac {z^{2}}{z_{m}^{2}}}=1}
表面积S和体积V为:
S
=
4
x
m
y
m
z
m
×
1
x
m
2
+
1
y
m
2
+
1
z
m
2
{displaystyle S=4,x_{m},y_{m},z_{m}times {sqrt {{frac {1}{x_{m}^{2}}}+{frac {1}{y_{m}^{2}}}+{frac {1}{z_{m}^{2}}}}}}
V
=
4
3
x
m
y
m
z
m
{displaystyle V={frac {4}{3}},x_{m},y_{m},z_{m}}
它的惯性张量I是:当
x
m
=
y
m
=
z
m
=
a
2
2
{displaystyle x_{m}=y_{m}=z_{m}=a,{frac {sqrt {2}}{2}}}
时,菱形体为上述正八面体。正八面体可以以多种不同的方向被正交投影到二维平面,以下表格展示了几种特殊的投影:正八面体作为3维的正轴体正多面体,自身拥有较高的对称性,它的所有面都是不可区分的。可是我们也可以想象将正八面体的面“涂上”不同的“颜色”,使它其的不同面拥有不同的“几何意义”,使正八面体拥有不同的对称性。正八面体的对称群是Oh(正八面体群),是三维的超正八面体群(英语:Hyperoctahedral group)。在此对称性下,正八面体的所有面都带有相同对“颜色”,对称性最高,群阶48。该群的子群体现了正八面体更低的对称性:Td(群阶24),截半正四面体的对称群;D3d(群阶12),三角反棱柱的对称群;D4h(群阶16),四角双棱锥(正四棱柱的对偶)的对称群;D2h(群阶8),三维长菱体(三维长方体的对偶)的对称群。正八面体的对偶多面体是立方体。当正八面体在立方体之内:
正八面体体积 : 立方体体积
=×2 : 边3
=(1/3)(n/2)2 : n3
=1 : 6两个互为对偶的正四面体可以组成一个复合正多面体,这两个正四面体的交集即是正八面体。这个复合多面体,也叫做星形八面体,是正八面体的第一个也是唯一一个星形展(英Stellation,暂译,目前还没有好的译名)。另一方面,从正四面体各棱中点处截去4个包含原顶点在内的线性大小只有原正四面体一半的正四面体,你也能得到正八面体,也就是说,正八面体是“截半正四面体”。在这里,正四面体与正八面体之间的关系就像立方体、正八面体与截半立方体;正十二面体、正二十面体与截半正十二面体一样。
除此以外,我们知道正二十面体还是“扭棱正四面体”,因此,正八面体与其也应该有关系。事实上,我们能够利用黄金分割从正八面体的棱上得到正二十面体的顶点。具体操作是:用有向线段代替这个正八面体的各棱,使每个面的3条有向线段恰好首尾相接,构成一圈。接着顺着每个有向线段的方向将其以黄金比例分割,分割点即是正二十面体的顶点。如果给定一正二十面体,则有5个不同的正八面体都可用上述操作得到给定正二十面体,这5个正八面体又可构成一复合正多面体,即五复合正八面体。正八面体可以和正四面体一起完成三维空间的密铺,这密铺被叫做正八面体—正四面体堆砌(Octahedral-Tetrahedral Honeycomb)(同时它也是交错立方体堆砌(Alternated Cubic Honeycomb),亦即半立方体堆砌(Demicubic Honeycomb)),是28个三维半正堆砌之一,是除立方体堆砌以外唯一一个完全由正多面体完成的三维堆砌。正八面体也参与了截半立方体堆砌。
正八面体是柏拉图立体中唯一一个在顶点处有偶数个面相交的,也是唯一一个所有对称镜面不穿过任何一面的。
以约翰逊多面体的角度来看,正八面体是双四棱锥,将其上下两个顶点截取,即得到双四棱台。
正八面体是四连通的,意味着要想打断正八面体6个顶点之间的连接,至少要撤掉4个顶点。它是4个四连通单纯形面全覆盖多面体之一,意味着它所有顶点的极大独立集(英语:maximal independent sets)都有相同大小。其余3个多面体是约翰逊多面体双五棱锥、变棱双五角锥和一个非半正的有12个顶点和20个正三角形面的多面体。正八面体是正八面体家族的一员,与其对偶立方体隶属同一家族:正八面体还在拓扑上与其它三角形镶嵌{3,n}相关联:正如以上所述,正八面体是截半正四面体,在这里正八面体相邻的面被涂上2种不同的颜色,在这种情况下,正八面体有正四面体对称性A3。注意到前五个正四面体的截顶体,它们可以被看作是四维超正方体长对角线垂直于平面时平面在不同高度截超正方体而得到的不同截面,如果设对角线长h=1时,这5种不同的截面分别出现于截面高度为(0,1/4]、3/8、1/2、5/8、[3/4,1)时,其中的正八面体截面是超正方体所有截面中体积最大的。正八面体作为三角反棱柱,与六角二面体和三角二面体之间存在关系,同时,它也是反棱柱无穷序列的一员:正八面体是四角双棱锥,是无穷序列半正对偶双棱锥的一员:正八面体与星形半正多面体—四面半六面体有着同样的棱和顶点结构,并且有4个交错排列的三角形面是相同的,而后者还有3个正交与中心正方形面,它是实射影多面体(即它不可以被描述成球面镶嵌,而是实射影平面镶嵌)。巴克敏斯特·富勒在20世纪50年代发明了一种由正四面体和正八面体构成的球节架,其结构就是正八面体—正四面体堆砌,是公认的最强的抗悬臂压力的架结构。三角柱 · 四角柱 · 五角柱 · 六角柱 · 七角柱 · 八角柱 · 九角柱 · ... · 无限角柱(双曲)三角反柱 · 四角反柱 · 五角反柱 · 六角反柱 · 七角反柱 · 八角反柱 · ... · 无限角反柱三角锥柱 · 四角锥柱 · 五角锥柱 · 六角锥柱 · 七角锥柱 · 八角锥柱 · ... · 无限角锥柱
相关
- 奇恒之腑脏腑,是中医对内脏的总称,通称五脏六腑。根据《素问‧五脏别论篇》,“脏”指的是人体内的五脏,即:肝、心、脾、肺、肾(加上心包即为六脏),主要功能为生化和蓄存精气;以及六腑,即:胆、小
- 九章算术《九章算术》九卷,是现存最早的中国古代数学著作之一,《算经十书》中最重要的一种。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的。在四库全书中为
- 安第斯山安第斯山脉(西班牙语:Cordillera de los Andes;奇楚亚语:Walla Antikuna),也称安弟斯山脉或安蒂斯山脉,是陆地上最长的山脉,位于南美洲的西岸,约7,000公里长,200至700公里宽(最宽的部分
- 曾益新曾益新(1962年10月-),湖南涟源人,中国肿瘤学家。1985年毕业于湖南衡阳医学院,1990年获中山医科大学医学博士学位。曾任中山大学肿瘤防治中心主任、华南肿瘤学国家重点实验室主任,兼
- 相关性在概率论和统计学中,相关(Correlation),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许
- 手帕手绢,亦称手帕、手捏子、手巾、面帕,是一种生活用品。
- 阴阳历阴阳合历,又称太阴太阳历,是为许多文化采用的历法,其日期采朔望月以指示月球的相位,年则与太阳相关,且一年的月数必须是整数。大多采用太阳年以回归年定义,也有采用恒星年定义者。
- 味之素味之素株式会社是日本一家食品制造商,在日本多称为“味之素KK”,以发明味精及制造各式增味剂著称。“味之素”(日语:味の素)也是其出产之味精的注册商标。虽然是以食品制造商的身
- 费迪南德·马可仕费迪南德·埃曼努埃尔·埃德拉林·马科斯(他加禄语:Ferdinand Emmanuel Edralin Marcos,1917年9月11日-1989年9月28日),菲律宾政治人物、独裁者,1965年至1986年统治菲律宾长达20年
- 2014年2014年被中华人民共和国处决的死刑犯列表,旨在列出2014年被中华人民共和国处决的死刑犯。