群表示论

✍ dations ◷ 2024-12-22 18:37:21 #抽象代数,群论,群表示论

在群论中,群表示论(group representation theory)是一个非常重要的理论。它包含了(局部)紧致群、李群、李代数及群概形的表示等种种分支,近来无限维表示理论也渐露头角。表示理论在量子物理与数学的各领域中均有重要应用。

表示理论早期是藉矩阵的语言描述的,具体定义如下:

形式地说,一个群 G {\displaystyle G} 的表示乃一同态 ρ : G G L ( V ) {\displaystyle \rho :G\rightarrow \mathrm {GL} (V)} ,其中 V {\displaystyle V} 为给定的有限维向量空间,系数布于一个域 F {\displaystyle F} ,通常取 F = C {\displaystyle F=\mathbb {C} } ,但在一般域(如局部域或有限域)上的表示也有重要应用。 G L ( V ) {\displaystyle \mathrm {GL} (V)} 表从 V {\displaystyle V} 上的自同构,或对一给定的基底来说,是 n = dim V {\displaystyle n=\dim V} 阶可逆方阵的集合。若 K e r ( ρ ) {\displaystyle \mathrm {Ker} (\rho )} 是平凡的,则称此表现是忠实的。

若所考虑的群 G {\displaystyle G} 带有额外的结构(如拓扑群、李群或群概形),我们通常要求 ρ {\displaystyle \rho } 满足相应的条件(如连续性、可微性或者要求它是概形间的态射);在有限群及紧致群以外的情况,通常也须考虑无穷维表示。

一个群 G {\displaystyle G} 的所有有限维表示构成一个张量范畴,记为 R e p G {\displaystyle \mathrm {Rep} _{G}} ;其态射定义如下:

H o m G ( ( ρ , V ) , ( σ , W ) ) := { f H o m F ( V , W ) : f ( ρ ( g ) v ) = σ ( g ) f ( v ) } {\displaystyle \mathrm {Hom} _{G}((\rho ,V),(\sigma ,W)):=\{f\in \mathrm {Hom} _{F}(V,W):f(\rho (g)v)=\sigma (g)f(v)\}}

它等价于有限维 F {\displaystyle F} -模所构成的范畴。不难验证表示间的同构确由矩阵的相似变换给出。一个表示被称作不可约的,当且仅当它没有在 G {\displaystyle G} 的作用下不变的非平凡子空间。若一个表示能表成不可约表示的直和,则称之为完全可约的。若取 F = C {\displaystyle F=\mathbb {C} } ,则紧致群的表示均为完全可约的,对于一般的李群及群概形则复杂得多,完全可约与否通常与半单性有关。

给定 G {\displaystyle G} 的一个表示,可以得到一个特征标 χ : G F {\displaystyle \chi :G\rightarrow F} ,它是个类函数。特征标理论在有限群分类中占关键地位;在紧致群上,特征标满足舒尔正交关系,又根据彼得-外尔定理,不可约表现的特征标相对于 L {\displaystyle L^{\infty }} 范数在类函数中稠密。请参见特征标理论。

H {\displaystyle H} G {\displaystyle G} 之子群, ( G : H ) < {\displaystyle (G:H)<\infty } 。以下将定义两个函子 R e s H G : R e p G R e p H {\displaystyle \mathrm {Res} _{H}^{G}:\mathrm {Rep} _{G}\rightarrow \mathrm {Rep} _{H}} (限制)与 I n d H G : R e p H R e p G {\displaystyle \mathrm {Ind} _{H}^{G}:\mathrm {Rep} _{H}\rightarrow \mathrm {Rep} _{G}} (诱导)。

诱导表示亦可用矩阵直接计算,或定义为某个主齐性空间的截面;后者可推广至李群与群概形的表示,此时诱导表示的性状与 G / H {\displaystyle G/H} 的几何构造密切相关。

弗罗贝尼乌斯互反定理言明:若 V , W {\displaystyle V,W} 分别为 G , H {\displaystyle G,H} 的表示,则有自然的同构 H o m H ( W , R e s H G ( V ) ) = H o m G ( I n d H G ( W ) , V ) {\displaystyle \mathrm {Hom} _{H}(W,\mathrm {Res} _{H}^{G}(V))=\mathrm {Hom} _{G}(\mathrm {Ind} _{H}^{G}(W),V)} 。换言之: ( I n d H G , R e s H G ) {\displaystyle (\mathrm {Ind} _{H}^{G},\mathrm {Res} _{H}^{G})} 为一对伴随函子。

若以特征标表之,上述同构化为一个较弱但较具体的等式: ( χ I n d H G ( W ) , χ V ) = ( χ W , χ R e s H G ( V ) ) {\displaystyle (\chi _{\mathrm {Ind} _{H}^{G}(W)},\chi _{V})=(\chi _{W},\chi _{\mathrm {Res} _{H}^{G}(V)})}

迄今已知的物理定律通常在某个李群的作用下保持不变,如空间的旋转群 S O ( 3 ) {\displaystyle \mathrm {SO} (3)} 或其覆盖 S p i n ( 3 ) {\displaystyle \mathrm {Spin} (3)} ,其不可约表示关系到角动量的量子化。进一步的例子是:任何与狭义相对论相容的量子力学系统都带有 G := A H {\displaystyle G:=AH} (半直积)的酉表示,其中 A {\displaystyle A} 是时空的平移而 H {\displaystyle H} 是 劳仑兹变换群,借着研究 G {\displaystyle G} 的不可约酉表示,可分类粒子的质量和自旋。

相关

  • 双氯西林双氯西林(Dicloxacillin)是一种半合成的β-内酰胺类抗生素,属于耐酶的半合成青霉素类抗生素,主要治疗由革兰氏阳性菌感染引发的疾病。双氯西林有多种商品名,比如百时美施贵宝生产
  • 网状红细胞网状红血球,即未成熟的红血球,通常占人体总红血球数约1%。红血球生成的过程中,网状红血球会在骨髓内发育成熟,并在完全转变成红血球之前,在血流中循环大约一天的时间。哺乳动物的
  • 胸管胸腔闭式引流术,又称“胸廓造口术、胸腔管手术”,是一种较为简单的外科手术。一般用于治疗各种胸腔积水、胸腔积液(英语:pleural effusion)和气胸等。过程是先进行局部麻醉后,在肋
  • Spironolactone螺内酯(英语:spironolactone),商品名有安体舒通、Aldactone等,是一种常用于治疗心衰、肝硬化、胃病等引发的积液的利尿药。此药也用于治疗高血压、补充后仍无改善的低血钾,以及女
  • 土壤盐化土壤盐化(英语:soil salinization,又称土壤盐碱化)是常发生于气候炎热、干燥,实施灌溉却排水不良之沙漠及沿海地区等农牧业地区的现象。盐害会危害建筑物、公共设施以及出土遗迹
  • 十二经脉十二经脉是手三阴经(肺、心包、心)、手三阳经(大肠、三焦、小肠)、足三阳经(胃、胆、膀胱)、足三阴经(脾、肝、肾)的总称。十二经脉是经络系统的主体,故又称为正经。十二经脉在体表左
  • 一卡通票证公司一卡通票证公司(英语:iPASS Corporation)为台湾第三间获核准的电子票证公司,2014年2月13日于高雄市前镇区正式成立,概括承受原由高雄捷运公司负责之一卡通业务。2017年中旬取得电
  • 兰开夏兰开夏(英语:Lancashire,又译为兰开夏郡或兰开郡),是英国英格兰西北部的郡,包含2个城市。以人口计算,兰开斯特市是第1大城市、第1大自治市镇(Borough),普雷斯頓是第2大城市(亦是郡治)、
  • 邻苯二甲酸二异丁酯邻苯二甲酸二异丁酯(Diisobutyl phthalate,DIBP)可由异丁醇和邻苯二甲酸酐进行酯化反应来制备。结构式为C6H4(COOCH2CH(CH3)2)2。折射率为1.488-1.492(20 ℃,D)。DIBP是无味增塑剂,
  • 棱堡棱堡(Bastion),或译菱堡,是一种出现于16世纪中期至19世纪中期的火炮防御阵地。完整的菱堡除了两个前端凸出面外,尚包含两个侧面保护帷幕墙并连接菱堡本体。菱堡常被视作堡垒的一