群表示论

✍ dations ◷ 2025-02-01 08:07:10 #抽象代数,群论,群表示论

在群论中,群表示论(group representation theory)是一个非常重要的理论。它包含了(局部)紧致群、李群、李代数及群概形的表示等种种分支,近来无限维表示理论也渐露头角。表示理论在量子物理与数学的各领域中均有重要应用。

表示理论早期是藉矩阵的语言描述的,具体定义如下:

形式地说,一个群 G {\displaystyle G} 的表示乃一同态 ρ : G G L ( V ) {\displaystyle \rho :G\rightarrow \mathrm {GL} (V)} ,其中 V {\displaystyle V} 为给定的有限维向量空间,系数布于一个域 F {\displaystyle F} ,通常取 F = C {\displaystyle F=\mathbb {C} } ,但在一般域(如局部域或有限域)上的表示也有重要应用。 G L ( V ) {\displaystyle \mathrm {GL} (V)} 表从 V {\displaystyle V} 上的自同构,或对一给定的基底来说,是 n = dim V {\displaystyle n=\dim V} 阶可逆方阵的集合。若 K e r ( ρ ) {\displaystyle \mathrm {Ker} (\rho )} 是平凡的,则称此表现是忠实的。

若所考虑的群 G {\displaystyle G} 带有额外的结构(如拓扑群、李群或群概形),我们通常要求 ρ {\displaystyle \rho } 满足相应的条件(如连续性、可微性或者要求它是概形间的态射);在有限群及紧致群以外的情况,通常也须考虑无穷维表示。

一个群 G {\displaystyle G} 的所有有限维表示构成一个张量范畴,记为 R e p G {\displaystyle \mathrm {Rep} _{G}} ;其态射定义如下:

H o m G ( ( ρ , V ) , ( σ , W ) ) := { f H o m F ( V , W ) : f ( ρ ( g ) v ) = σ ( g ) f ( v ) } {\displaystyle \mathrm {Hom} _{G}((\rho ,V),(\sigma ,W)):=\{f\in \mathrm {Hom} _{F}(V,W):f(\rho (g)v)=\sigma (g)f(v)\}}

它等价于有限维 F {\displaystyle F} -模所构成的范畴。不难验证表示间的同构确由矩阵的相似变换给出。一个表示被称作不可约的,当且仅当它没有在 G {\displaystyle G} 的作用下不变的非平凡子空间。若一个表示能表成不可约表示的直和,则称之为完全可约的。若取 F = C {\displaystyle F=\mathbb {C} } ,则紧致群的表示均为完全可约的,对于一般的李群及群概形则复杂得多,完全可约与否通常与半单性有关。

给定 G {\displaystyle G} 的一个表示,可以得到一个特征标 χ : G F {\displaystyle \chi :G\rightarrow F} ,它是个类函数。特征标理论在有限群分类中占关键地位;在紧致群上,特征标满足舒尔正交关系,又根据彼得-外尔定理,不可约表现的特征标相对于 L {\displaystyle L^{\infty }} 范数在类函数中稠密。请参见特征标理论。

H {\displaystyle H} G {\displaystyle G} 之子群, ( G : H ) < {\displaystyle (G:H)<\infty } 。以下将定义两个函子 R e s H G : R e p G R e p H {\displaystyle \mathrm {Res} _{H}^{G}:\mathrm {Rep} _{G}\rightarrow \mathrm {Rep} _{H}} (限制)与 I n d H G : R e p H R e p G {\displaystyle \mathrm {Ind} _{H}^{G}:\mathrm {Rep} _{H}\rightarrow \mathrm {Rep} _{G}} (诱导)。

诱导表示亦可用矩阵直接计算,或定义为某个主齐性空间的截面;后者可推广至李群与群概形的表示,此时诱导表示的性状与 G / H {\displaystyle G/H} 的几何构造密切相关。

弗罗贝尼乌斯互反定理言明:若 V , W {\displaystyle V,W} 分别为 G , H {\displaystyle G,H} 的表示,则有自然的同构 H o m H ( W , R e s H G ( V ) ) = H o m G ( I n d H G ( W ) , V ) {\displaystyle \mathrm {Hom} _{H}(W,\mathrm {Res} _{H}^{G}(V))=\mathrm {Hom} _{G}(\mathrm {Ind} _{H}^{G}(W),V)} 。换言之: ( I n d H G , R e s H G ) {\displaystyle (\mathrm {Ind} _{H}^{G},\mathrm {Res} _{H}^{G})} 为一对伴随函子。

若以特征标表之,上述同构化为一个较弱但较具体的等式: ( χ I n d H G ( W ) , χ V ) = ( χ W , χ R e s H G ( V ) ) {\displaystyle (\chi _{\mathrm {Ind} _{H}^{G}(W)},\chi _{V})=(\chi _{W},\chi _{\mathrm {Res} _{H}^{G}(V)})}

迄今已知的物理定律通常在某个李群的作用下保持不变,如空间的旋转群 S O ( 3 ) {\displaystyle \mathrm {SO} (3)} 或其覆盖 S p i n ( 3 ) {\displaystyle \mathrm {Spin} (3)} ,其不可约表示关系到角动量的量子化。进一步的例子是:任何与狭义相对论相容的量子力学系统都带有 G := A H {\displaystyle G:=AH} (半直积)的酉表示,其中 A {\displaystyle A} 是时空的平移而 H {\displaystyle H} 是 劳仑兹变换群,借着研究 G {\displaystyle G} 的不可约酉表示,可分类粒子的质量和自旋。

相关

  • 血吸虫病血吸虫病(英语:schistosomiasis、bilharzia、snail fever、Katayama fever)又称裂体虫病、曼森氏病,是一个由血吸虫类的寄生虫所导致之疾病,属于WHO所宣布的六大热带医学疾病之一
  • 亚平宁半岛意大利半岛(意大利语:Penisola italiana),又名亚平宁半岛 (Apennines)(意大利语:Penisola appenninica)是南欧洲三大半岛之一,位居三大半岛的中间,在地中海之北。亚平宁半岛北起波河
  • 结构式结构式(英语:Structural Formula),表示分子的空间结构,表示有机化合物一般用结构简式或键线式(一般省去碳氢键,有时也省去碳碳单键,用折线表示)。
  • 顺反子顺反子,也做作用子,它于1955年由美国分子生物学家本兹尔提出的,他称基因内部的功能互补群为顺反子。顺反子通过顺反试验确定,如两个位点可以互补,则两个位点不属于一个顺反子;如两
  • 张弥曼张弥曼(1936年4月17日-),中国古脊椎动物学(英语:Vertebrate paleontology)家,从事脊椎动物比较形态学、古鱼类学、中-新生代地层、古地理学、古生态学及生物进化论的研究。出生于江苏
  • 战略轰炸机战略轰炸机(Strategic Bomber)是轰炸机的一种,从高空对地面进行远程投弹的大型军用飞机。与战术轰炸机被用于对某个交战区内的军队和军事设备轰炸不同,战略轰炸机的用途是执行远
  • 联邦紧急事务管理局联邦紧急事务管理署(英语:Federal Emergency Management Agency,缩写FEMA;中文简称急管署,也译联邦紧急措施署、联邦应急事务管理署、联邦紧急事务管理局等)是美国联邦政府行政部
  • 肯尼斯·阿罗肯尼斯·约瑟夫·阿罗(Kenneth Joseph Arrow,1921年8月23日-2017年2月21日),美国经济学家,1972年诺贝尔经济学奖得主。阿罗被认为是二战后新古典主义经济学的代表人物,对许多经济学
  • 囊泡藻类囊泡藻界(学名:Chromalveolata)是一类真核生物。囊泡藻界这个概念是汤玛斯·卡弗利尔-史密斯1981年提出的色藻界的修订。表示双鞭毛生物与红藻发生单独的内共生后进化出的所有
  • 美国癌症协会美国癌症协会(American Cancer Society, ACS)是美国的一个致力于消除癌症的全国性的自愿健康组织。美国癌症协会成立于1913年,并在美国分布为十二个地区(包括波多黎各 ),拥有大约9