群上同调

✍ dations ◷ 2025-04-04 11:04:16 #群论,代数数论,同调代数

在同调代数中,群上同调是一套研究群及其表示的代数工具。群上同调源于代数拓扑,在代数数论上也有重要应用;它是现代类域论的基本构件之一。

群论中的指导思想之一,是研究群 G {\displaystyle G} 及其表示的关系。群 G {\displaystyle G} 的表示是 G {\displaystyle G} -模的特例:一个 G {\displaystyle G} -模是一个阿贝尔群 M {\displaystyle M} 配上 G {\displaystyle G} M {\displaystyle M} 上的群作用 G E n d ( M ) {\displaystyle G\to \mathrm {End} (M)} 。等价的说法是: M {\displaystyle M} 是群环 Z {\displaystyle \mathbb {Z} } 上的模。通常将 G {\displaystyle G} 的作用写成乘法 m g m {\displaystyle m\mapsto gm} 。全体 G {\displaystyle G} -模自然地构成一个阿贝尔范畴。

对给定的 G {\displaystyle G} -模 M {\displaystyle M} ,最重要的子群之一是其 G {\displaystyle G} -不变子群

N M {\displaystyle N\subset M} 是一个 G {\displaystyle G} -子模(即:是 M {\displaystyle M} 的子群,且在 G {\displaystyle G} 的作用下不变),则 M / N {\displaystyle M/N} 上赋有自然的 G {\displaystyle G} -模结构, N G M G {\displaystyle N^{G}\subset M^{G}} ,但是未必有 ( M / N ) G = M G / N G {\displaystyle (M/N)^{G}=M^{G}/N^{G}} 。第一个群上同调群 H 1 ( G , N ) {\displaystyle H^{1}(G,N)} 可以设想为两者间差异的某种量度。一般而言,可以定义一族函子 H n ( G , ) {\displaystyle H^{n}(G,-)} ,其间关系可以由长正合序列表示。

以下假设 G {\displaystyle G} 为有限群,全体 G {\displaystyle G} -模构成阿贝尔范畴,其间的态射 H o m G ( M , N ) {\displaystyle \mathrm {Hom} _{G}(M,N)} 定义为满足 f ( g x ) = g f ( x ) {\displaystyle f(gx)=gf(x)} 的群同态 f : M N {\displaystyle f:M\to N} 。由于此范畴等价于 Z {\displaystyle \mathbb {Z} } -模范畴,故有充足的内射对象。

函子 M M G {\displaystyle M\to M^{G}} 是从 G {\displaystyle G} -模范畴映至阿贝尔群范畴的左正合函子。定义 H n ( G , M ) {\displaystyle H^{n}(G,M)} 为其导函子。根据导函子的一般理论,可知:

在上述定义中,若固定一个域 k {\displaystyle k} ,并以 k {\displaystyle k} 代替 Z {\displaystyle \mathbb {Z} } ,得到的上同调群依然同构。

导出函子的定义来自内射分解,不便于具体计算。然而注意到 M G = H o m G ( Z , M ) {\displaystyle M^{G}=\mathrm {Hom} _{G}(\mathbb {Z} ,M)} ,其中 Z {\displaystyle \mathbb {Z} } 被赋予平凡的 G {\displaystyle G} 作用: g x = x {\displaystyle gx=x} ,故群上同调可以用Ext函子表达为

另一方面, G {\displaystyle G} -模范畴中也有充足的射影对象,若取一 Z {\displaystyle \mathbb {Z} } 的射影分解 0 Z P {\displaystyle 0\leftarrow \mathbb {Z} \leftarrow P_{\bullet }} ,则有自然的同构 E x t i ( Z , M ) H i ( H o m ( P , M ) ) {\displaystyle \mathrm {Ext} ^{i}(\mathbb {Z} ,M)\simeq H^{i}(\mathrm {Hom} (P_{\bullet },M))} 。最自然的分解是标准分解

L 0 Z {\displaystyle L_{0}\to \mathbb {Z} } g 0 1 {\displaystyle g_{0}\mapsto 1} 给出。

定义 K i := H o m G ( L i , M ) {\displaystyle K^{i}:=\mathrm {Hom} _{G}(L_{i},M)} ,其元素为形如 f : G i + 1 M {\displaystyle f:G^{i+1}\mapsto M} 的函数,并满足 f ( g g 0 , , g g i ) = g f ( g 0 , , g i ) {\displaystyle f(gg_{0},\ldots ,gg_{i})=gf(g_{0},\ldots ,g_{i})} ,称之为齐次上链。根据 G {\displaystyle G} L i {\displaystyle L_{i}} 上的作用,这种 f {\displaystyle f} 由它在形如 ( e , g 1 , g 1 g 2 , , g 1 , g i ) {\displaystyle (e,g_{1},g_{1}g_{2},\ldots ,g_{1}\ldots ,g_{i})} 的元素上的取值确定。借此,可将上链复形 K i {\displaystyle K^{i}} 描述为

其中的元素称为非齐次上链。

综上所述,得到 H i ( K ) = H i ( G , M ) {\displaystyle H^{i}(K^{\bullet })=H^{i}(G,M)}

较常用的上同调是 H 1 {\displaystyle H^{1}} H 2 {\displaystyle H^{2}} 。从标准分解可导出以下的描述:

准此要领,亦有

上述理论有一对偶版本:对于任一 G {\displaystyle G} -模 M {\displaystyle M} ,定义 D M {\displaystyle DM} 为形如 g m m {\displaystyle gm-m} 的元素生成之子模。考虑从 G {\displaystyle G} -模范畴映至阿贝尔群范畴的函子

这是一个右正合函子,其导出函子称为为群同调 H n ( G , M ) {\displaystyle H_{n}(G,M)} 。群同调可以藉Tor函子描述为

对于有限群,群同调与群上同调可在塔特上同调群的理论下得到一贯的描述。

将上述定义中的 G {\displaystyle G} -模 M {\displaystyle M} 改成一般的群 A {\displaystyle A} (未必交换),并带有 G {\displaystyle G} 的作用 a g ( a ) {\displaystyle a\mapsto g(a)} (称之为 G {\displaystyle G} -群)。此时仍然可以定义第零个及第一个群上同调:

须留意 H 0 ( G , A ) , H 1 ( G , A ) {\displaystyle H^{0}(G,A),H^{1}(G,A)} 并不是群,而是带有一个指定元素的集合(来自 A {\displaystyle A} 的单位元),以下所谓的正合性,都应该在此意义下理解。

1 A B C 1 {\displaystyle 1\to A\to B\to C\to 1} G {\displaystyle G} -群的短正合序列,则有长正合序列

A {\displaystyle A} 落在 B {\displaystyle B} 的中心,此序列右端可再加一项 H 1 ( G , C ) H 2 ( G , A ) {\displaystyle H^{1}(G,C)\to H^{2}(G,A)}

f : H G {\displaystyle f:H\to G} 为群同态,则可将任一 G {\displaystyle G} -模透过 f {\displaystyle f} 视为 H {\displaystyle H} -模,此运算导出上同调之间的映射

此映射与群上同调的长正合序列相容。当 H {\displaystyle H} G {\displaystyle G} 的子群而 f {\displaystyle f} 是包含映射,导出的映射称为限制映射,记为 Res。

由于我们假设 G {\displaystyle G} 为有限群,必有 ( G : H ) < {\displaystyle (G:H)<\infty } ,此时映射

导出一个上限制映射 C o r : H ( H , M ) H ( G , M ) {\displaystyle \mathrm {Cor} :H^{\bullet }(H,M)\to H^{\bullet }(G,M)}

相关

  • 上呼吸道呼吸道是指人体内呼吸过程中空气所要通过的所有器官的总称。呼吸道是呼吸系统的一部分,呼吸系统还包括空气不必通过的、但对呼吸过程依然非常重要的器官,比如横膈膜。呼吸道可
  • 氯四环素金霉素也被称为“氯四环素”,是第一个被发现的四环素类抗生素。于1945年被Benjamin Duggar博士从密苏里大学的桑博试验田采集的土壤样本中分离得到的金色链霉菌(Streptomyces
  • 巴士底广场巴士底广场(法语:Place de la Bastille)是法国首都巴黎的一个广场,是法国大革命的重要纪念地方。过去是巴士底狱所在地,直到攻占巴士底狱,随后在法国革命期间的1789年7月14日到179
  • 乔治亚语格鲁吉亚语(格鲁吉亚语:ქართული,转写: kartuli ena,发音)是高加索语言的一种,是格鲁吉亚的官方语言,在格鲁吉亚有三百九十万人(总人口83%)作为第一语言,另外在伊朗、土耳其、俄
  • 大陆军大陆军(英语:Continental Army)是美国独立战争中的英属北美殖民地军事力量,于1775年6月14日根据第二次大陆议会的决议建立,使美国独立运动有了革命武力对抗英国军队。在整个战争
  • 曹县曹县在中国山东省西南部,是菏泽市所辖的一个县,邻接河南省。周为曹国地;隋置济阴县,为曹州治;明洪武二年(1369年)曹州治因水患迁置楚丘县盘石镇,撤楚丘县入曹州,洪武四年(1371年)降曹州
  • 安孝燮安孝燮(韩语:안효섭,1995年4月17日-),韩国男演员,加拿大韩裔,专长:英文、钢琴、吉他、小提琴、歌唱、舞蹈。
  • 清浦奎吾清浦圭吾(1850年3月27日-1942年11月5日),日本政治家,第23任日本内阁总理大臣。历任司法官、贵族院议员、司法大臣、农商务大臣、枢密院议长等职务。1924年出任日本首相,但由于其阁
  • 林瀚 (棒球运动员)林瀚(1985年1月24日-),本名林一宏,台湾棒球选手,出身于台北市,投打习惯为右投右打,守备位置为游击手。2009年1月,在特别选秀会中被统一狮队相中后,因对狮队开出的签约金以及月薪无法达
  • 头转头转(Headspin),它是街舞技巧的一种。以头着地,向上支撑身体,使之与地面呈垂直轴线,再借由连续的旋转动作来平衡。这项动作通常运用在巴西武术卡波耶拉和地板舞。第一次出现头转的