夏普比率(英语:Sharpe ratio),或称夏普指数(Sharpe index)、夏普值,在金融领域衡量的是一项投资(例如证券或投资组合)在对其调整风险后,相对于无风险资产的表现。它的定义是投资收益与无风险收益之差的期望值,再除以投资标准差(即其波动性)。它代表投资者额外承受的每一单位风险所获得的额外收益。
夏普比率这个名字来自于1966年提出它的威廉·F·夏普。
夏普比率在其原作者威廉·夏普在1994年修订之后, 事前夏普比率定义为:
其中 f 在整个期间是一个恒定的无风险收益,则:
最近,(原始的)夏普比率在市场下跌的评估期间经常被质疑是否适合作为基金绩效指标。
例1
假设资产的预期收益率超过无风险利率15%,但未知资产是否会获得此回报;假设评估资产的风险(定义为资产超额收益(英语:excess return)的标准偏差)为10%。无风险收益是常数,那么夏普比率(使用旧的定义)将是
例2
本例有关基于现代定义计算更常用的事后夏普比率(即使用已实现收益,而不是预期收益)。请考虑以下表格中的每周收益。
假设该资产类似于美国大盘股票基金,理论上以标准普尔500指数为基准。超额收益的平均值为-0.0001642,(样本)标准偏差为0.0005562248,因此夏普比率为-0.0001642/0.0005562248或-0.2951444。
例3
假设目前投资一个预期回报率为12%,波动率为10%的投资组合。无风险利率是5%。夏普比率就是:
夏普比率为负意味着该投资组合的表现低于基准。在其他条件相同的情况下,投资者希望通过增加回报率和减少波动性来增加夏普比率。然而,无论是提高收益率(好事)还是增加波动性(坏事),夏普比率的负值都可以接近于零。因此,对于负收益,夏普比率并不是一种特别有用的分析工具。
夏普比率其中一个主要问题是,它依赖于“风险等于波动性”和“波动性是坏事”的前设。“波动性是坏事”是过于简化的概念;越是减少波动性,就越不可能获得更高的回报。此外,夏普比率面临的更大问题是,它对待所有波动都是一样的。例如这个比率惩罚了具有上升波动性(即高正回报)的投资策略,因而得出跟其他风险调整比率相反的结论。夏普比率的主要优点是,它可以直接从观察到的任何一系列回报中计算出来,而不需要关于盈利来源的额外信息。最近文献中引入了其他比率,如乖离率,以处理观察到的波动率可能无法很好地替代观察到的回报率时间序列中固有风险的情况。
虽然特雷诺比率(英语:Treynor ratio)只适用于投资组合的系统性风险,但夏普比率同时观察系统风险和特殊风险(英语:idiosyncratic risk)。
只要收益是正态分布的,所测量的收益可以是任何频率(即每日、每周、每月或每年),因为收益总是可以按年计算。这就是该比率的潜在弱点——并非所有资产收益都是正态分布的。分布上存在峰度(英语:Kurtosis risk)、肥尾、高峰或偏度(英语:Skewness risk)时,标准差的有效性会不一样,于是夏普比率就会产生问题。有时候,当收益率不是正态分布的时候,使用这个公式是非常危险的。
Bailey和López de Prado(2012)表明,对于投资记录较短的对冲基金来说,夏普比率往往被夸大了。这些作者提出了夏普比率的概率版本,以对应收益分布的不对称性和肥尾效应。关于基于夏普比率选择投资经理的问题,这些作者提出了“夏普比率无差异曲线”。 这条曲线说明,只要选择多于一名投资经理,且选择的多名投资经理相关性足够低,聘用夏普比率较低甚至为负的投资经理仍是有效率的。
因为这是一个无量纲比率,外行很难理解不同投资的夏普比率,容易引起如“夏普比率为0.5的投资比夏普比率为 -0.2的投资好多少?”等疑问。Modigliani风险调整绩效指标(英语:Modigliani risk-adjusted performance)有效地解决了这一弱点,该指标以回报率为单位,几乎所有投资者都能普遍理解。在某些情况下,凯利准则可用于将夏普比率转换为收益率。(凯利准则给出了理想的投资规模,当调整的时期和预期收益率的单位,给出了收益率。)
夏普比率估计量的准确性取决于收益率的统计特性,而这些特性在不同的策略、投资组合中,以及随着时间推移可能有很大的不同。