在几何学中,六阶五边形镶嵌是由五边形组成的双曲面正镶嵌图,每六个五边形共用一个顶点。在施莱夫利符号用{5,6}表示。六阶五形镶嵌即每个顶点皆为六个五边形的公共顶点,顶点周围包含了六个不重叠的五边形,一个五边形内角108度,六个五边形超过了360度,因此无法因此无法在平面作出,但可以在双曲面上作出。
该镶嵌也可以透过在对称性中以两种颜色替五边形交错涂色而构成,其表示为 t1(5,5,3)。
这个镶嵌代表一个由六条镜射线定义一个正六边形基本域的万花筒,且五条镜射线相交于一点。 这由五个三阶交叉反射性在轨型符号(英语:orbifold notation)被称为(*33333)。
该镶嵌在拓朴学上和顶点图是(5n)的一系列的镶嵌的一部分。
该镶嵌在拓朴学中也和每个顶点有着六个面的多面体及镶嵌相关, 施莱夫利符号皆为{n,6},而考斯特符号为,从n到无穷。