动力系统

✍ dations ◷ 2025-10-29 00:38:31 #动力系统
动力系统(dynamical system)是数学上的一个概念。动力系统是一种固定的规则,它描述一个给定空间(如某个物理系统的状态空间)中所有点随时间的变化情况。例如描述钟摆晃动、管道中水的流动,或者湖中每年春季鱼类的数量,凡此等等的数学模型都是动力系统。在动力系统中有所谓状态的概念,状态是一组可以被确定下来的实数。状态的微小变动对应这组实数的微小变动。这组实数也是一种流形的几何空间坐标。动力系统的演化规则是一组函数的固定规则,它描述未来状态如何依赖于当前状态的。这种规则是确定性的,即对于给定的时间间隔内,从现在的状态只能演化出一个未来的状态。若只是在一系列不连续的时间点考察系统的状态,则这个动力系统为离散动力系统;若时间连续,就得到一个连续动力系统。如果系统以一种连续可微的方式依赖于时间,我们就称它为一个光滑动力系统。许多人视法国数学家及物理学家庞加莱为动力系统的创始者。他发行了两份现在被誉为经典的专著:天体力学的新方法《天体力学的新方法》(New Methods of Celestial Mechanics,1892–1899)、《天体力学讲义》(Lectures on Celestial Mechanics,1905–1910)。专著中,他成功将研究结果应用在三体问题,并详细研究其状态(频率,稳定性等)。作品中也包含庞加莱递推定理(Poincaré recurrence theorem),该定理指出某些系统在经过足够长但有限的时间之后,将返回到非常接近初始状态的状态。俄罗斯数学家李亚普诺夫发展许多重要的近似方法。他在1899年发展出的方法,使得定义常微分方程组的稳定性是可行的。 他也创造了动力系统稳定性的现代理论。美国数学家伯克霍夫在1913年证明了庞加莱的最终几何定理(Last Geometric Theorem),一个三体问题的特殊形况。在1927年,他则发行了《动力系统》(Dynamical Systems)。在1931年,伯克霍夫发现了最使他名留青史的结果,现在称作遍历定理。美国数学家斯梅尔也对动力系统作出重大贡献。他的贡献马蹄映射推动了动力系统重要研究,此外他还勾划出研究计划,让很多研究者实行。乌克兰数学家Sharkovsky(英语:Oleksandr Mykolayovych Sharkovsky)在1964年给出关于离散动力系统的Sharkovsky's定理(英语:Sharkovsky's theorem),此定理的一个含义是,如果实数轴上的离散动力系统具有周期为3的周期点,那么它必定具有任意周期的周期点。Works providing a broad coverage:Introductory texts with a unique perspective:TextbooksPopularizations:

相关

  • 意大利– æ¬§æ´²ï¼ˆæµ…ç»¿è‰²åŠæ·±ç°è‰²ï¼‰â€“ æ¬§ç›Ÿï¼ˆæµ…绿色)  —æ„大利共和å
  • 传导性耳聋听觉障碍(英语:Hearing loss)又称听力缺损,指听觉部分或完全丧失,而耳聋人士则是指完全没有或几乎没有听力者。听力缺损可能发生在单耳或双耳,有可能是暂时或永久性质。孩童的听力
  • 乳糜泻乳糜泻(英语:coeliac disease 或 celiac disease)是主要会影响到小肠的长期自身免疫性疾病。典型的症状包含胃肠道症状,像是慢性腹泻、腹胀、吸收不良(英语:malabsorption)、降低食
  • 粒细胞粒细胞是一类细胞质中包含颗粒体(英语:Granule_(cell biology))的白细胞,又因其细胞核形态多样而称多形核白细胞,(PMN或PML)。术语多形核白细胞通常特指最常见的中性粒细胞。粒细胞
  • 电子束阴极射线是在真空管中可以观察到的电子流。真空管是一个被抽成真空的、装有两个电极(一个阳极和一个阴极)的玻璃管。阴极被加热后,其释放出来的电子会像射线一般移离。假设在阳
  • 克里斯蒂安·亨德里克·珀森克里斯蒂安·亨德里克·珀森(Christiaan Hendrik Persoon,1761年2月1日-1836年11月16日)为真菌分类学家。
  • 外汇外汇主要是指外国货币,同时还包括以外国货币表示的用以进行国际结算的支付手段。结算衍生出来的比率就叫汇率。国际货币基金组织对外汇的定义是:外汇是货币行政当局(中央银行、
  • 鞭虫鞭虫是一种圆虫(一种寄生虫),因为其形状与鞭子相似而被称为鞭虫。
  • 腭(英语:Palate,又称颚,但颚亦可指上下整体的解剖结构),又称为上颚,是人类和其他哺乳动物的口腔顶部。它将口腔和鼻腔分开。在这一点上,鳄目也有类似构造。但是绝大多数的四足类其他
  • 递归递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。例如,当两面镜子相互之间近