置信水平

✍ dations ◷ 2025-06-15 15:21:35 #置信水平
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量 X {displaystyle {cal {X}}} 服从分布 F {displaystyle {cal {F}}} ,又假设 θ {displaystyle theta } 是 F {displaystyle {cal {F}}} 的参数之一。假设我们的数据采集计划将要独立地抽样 n {displaystyle n} 次,得到一个随机样本 { X 1 , … , X n } {displaystyle {X_{1},ldots ,X_{n}}} ,注意这里所有的 X i {displaystyle X_{i}} 都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本 X = { X 1 , … , X n } {displaystyle X={X_{1},ldots ,X_{n}}} 的一个函数,且不得依赖于任何未知参数) u ( X 1 , … , X n ) , v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})} 满足 u ( X 1 , … , X n ) < v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})} 使得:则称 ( u ( X 1 , … , X n ) , v ( X 1 , … , X n ) ) {displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)} 为一个用于估计参数 θ {displaystyle theta } 的 1 − α {displaystyle 1-alpha } 置信区间,其中的, α {displaystyle alpha } 称为置信水平。接续随机样本版本的定义,现在,对于随机变量 X {displaystyle {cal {X}}} 的一个已经观测到的样本 { x 1 , … , x n } {displaystyle {x_{1},ldots ,x_{n}}} ,注意这里用小写x表记的 x i {displaystyle x_{i}} 都是已经观测到的数字,没有随机性了,定义基于数据的 1 − α {displaystyle 1-alpha } 置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定 u = − ∞ {displaystyle u=-infty } 或者 v = + ∞ {displaystyle v=+infty } ,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1 − α {displaystyle 1-alpha } 水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用" ± {displaystyle pm } "进行简记:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本 X 1 , … , X n {displaystyle {X_{1},ldots ,X_{n}}} ,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间,可以用来检验具有相应的显著水平为 α {displaystyle alpha } 的双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差 σ 2 {displaystyle sigma ^{2}} ,在 α {displaystyle alpha } 显著水平下检验:检验方法是:当且仅当相应的 1 − α {displaystyle 1-alpha } 水平置信区间不包含 μ 0 {displaystyle mu _{0}} 时拒绝零假设 H 0 {displaystyle H_{0}}例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间也可以用来检验如下两个显著水平为 α / 2 {displaystyle alpha /2} 的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验 H 1 : μ > μ 0 {displaystyle H_{1}:mu >mu _{0}} ,当且仅当双边置信区间的左端点大于 μ 0 {displaystyle mu _{0}} 时拒绝零假设。

相关

  • 热带莽原疏林莽原或译稀树莽原、稀树草原(Taíno阿拉瓦克语:sabana),分布于热带地区的又称热带莽原,主要分布于非洲、巴西和澳大利亚的部分地区,草类高大茂密,稀疏的林木散布其间。高温而有
  • 宫底高度宫底高度(Fundal height)也称为耻骨联合-宫底高度(symphysial fundal height,也称为SFH),也称为宫顶高度或宫高,是妊娠中量测子宫大小的方式,可以在怀孕中评估胎儿成长及其发育情形
  • Wiktionary维基词典(英语:Wiktionary),是维基百科的姊妹工程,它的目标是创建一个基于所有语言的自由的词典。该项目于2002年12月12日启动,发起人是维基人Daniel Alston。维基词典旨在收录字
  • 资讯鉴识信息鉴识(Information Forensics)是一种网络行为,利用所有已知的或未知的信息渠道来辩证一段网络信息的真伪,不论这个渠道是实体的还是虚拟的。互联网是一个自由的信息载体(Infor
  • 赤道赤道通常指地球表面的点随地球自转产生的轨迹中周长最长的圆周线,长40,075.02千米(24,901英里)。如果把地球看做一个绝对的球体的话,赤道距离南北两极相等。它把地球分为南北两
  • 第二产业第二产业,又称第二级产业,是指位处一件产品的生产链中层的行业,这些行业在一件产品的生产链中担任原料加工的工作,是该产品自生产至供应市场的中间阶段。每样产品都有自己独有的
  • 瓦兹河谷省瓦兹河谷省(法语:Val-d'Oise),或音译为瓦勒德瓦兹省,是法国法兰西岛大区所辖的省份。该省编号为95,属于巴黎的市郊地带。瓦兹河谷省的编号95不像法国其它省份那样按照字母顺序排列
  • 吴承康吴承康(1929年11月14日-),祖籍河北滦县,出生于上海,高温气体力学家,中国科学院院士。吴承康于1941年考入上海南洋模范中学。1947年进入交通大学就读。次年起赴美国留学,1951年、1952
  • 童年期童年是从出生跨越到青春期的年龄段。童年由两个阶段组成:前运算阶段(preoperational stage)和具体运算阶段(concrete operational stage)。在发展心理学中,童年被分为四个发展阶段
  • 电脑成像计算机产生图像(英文:Computer-generated imagery,缩写:CGI),简称计算机成像,旧称计算机绘图(英文:Computer Graphics,缩写:CG),是指使用计算机产生的影像,更精确的如应用在影片中的三维特