置信水平

✍ dations ◷ 2025-01-23 07:54:08 #置信水平
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量 X {displaystyle {cal {X}}} 服从分布 F {displaystyle {cal {F}}} ,又假设 θ {displaystyle theta } 是 F {displaystyle {cal {F}}} 的参数之一。假设我们的数据采集计划将要独立地抽样 n {displaystyle n} 次,得到一个随机样本 { X 1 , … , X n } {displaystyle {X_{1},ldots ,X_{n}}} ,注意这里所有的 X i {displaystyle X_{i}} 都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本 X = { X 1 , … , X n } {displaystyle X={X_{1},ldots ,X_{n}}} 的一个函数,且不得依赖于任何未知参数) u ( X 1 , … , X n ) , v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})} 满足 u ( X 1 , … , X n ) < v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})} 使得:则称 ( u ( X 1 , … , X n ) , v ( X 1 , … , X n ) ) {displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)} 为一个用于估计参数 θ {displaystyle theta } 的 1 − α {displaystyle 1-alpha } 置信区间,其中的, α {displaystyle alpha } 称为置信水平。接续随机样本版本的定义,现在,对于随机变量 X {displaystyle {cal {X}}} 的一个已经观测到的样本 { x 1 , … , x n } {displaystyle {x_{1},ldots ,x_{n}}} ,注意这里用小写x表记的 x i {displaystyle x_{i}} 都是已经观测到的数字,没有随机性了,定义基于数据的 1 − α {displaystyle 1-alpha } 置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定 u = − ∞ {displaystyle u=-infty } 或者 v = + ∞ {displaystyle v=+infty } ,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1 − α {displaystyle 1-alpha } 水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用" ± {displaystyle pm } "进行简记:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本 X 1 , … , X n {displaystyle {X_{1},ldots ,X_{n}}} ,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间,可以用来检验具有相应的显著水平为 α {displaystyle alpha } 的双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差 σ 2 {displaystyle sigma ^{2}} ,在 α {displaystyle alpha } 显著水平下检验:检验方法是:当且仅当相应的 1 − α {displaystyle 1-alpha } 水平置信区间不包含 μ 0 {displaystyle mu _{0}} 时拒绝零假设 H 0 {displaystyle H_{0}}例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间也可以用来检验如下两个显著水平为 α / 2 {displaystyle alpha /2} 的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验 H 1 : μ > μ 0 {displaystyle H_{1}:mu >mu _{0}} ,当且仅当双边置信区间的左端点大于 μ 0 {displaystyle mu _{0}} 时拒绝零假设。

相关

  • SIRT1n/an/an/an/an/an/an/an/an/an/aSIRT1(英语:Sirtuin 1),也被称为 NAD-依赖性去乙酰化酶Sirtuin-1(英语:NAD-dependent deacetylase sirtuin-1),是人类基因组中由SIRT1基因编码的蛋白
  • 谁是犹太人?“谁是犹太人?”(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","
  • 护土墙护土墙(英语:Retaining wall),为一建于斜坡的建筑物,用以加固土坡或石坡。防止山崩,防止土块和石块落下,以保护行人和附近建筑物的安全,亦可防止水土侵蚀。护土墙材料可以是石头、木
  • 贝纳通班尼顿集团(英语:Benetton Group S.r.l.,正确读音,经常被误读为或),于1965年成立,是全球知名的优闲服装品牌,总部设于意大利北部市镇蓬扎诺韦内托,世界各地门市约6千间,2013年度财政收
  • CZn有机锌化合物是指含有碳-锌化学键的一类有机化合物。有机锌化学是一门研究有机锌化合物理化性质、合成和反应的学科。第一个被发现和制备的有机锌化合物是二乙基锌(Diethylzin
  • 英国行政区划政治主题英国的行政区划比较复杂,多层次,且不统一。英国作为一个主权国家,由英格兰、威尔士、苏格兰三个构成国和北爱尔兰组成。英格兰、威尔士、苏格兰、北爱尔兰每个部分皆有
  • 担子菌纲担子菌门(学名:Basidiomycota)是一类高等真菌,构成双核亚界,包含2万多种,包括蘑菇、木耳等主要食用菌。更具体地说,担子菌门包括以下组:蘑菇,马勃,stinkhorns(鬼笔科),支架真菌(英语:Bracke
  • 时间疗法时间疗法(英语:chronotherapy),是指:尝试将睡眠时间和起床时间日复一日地后移,直到睡眠回归到正常的作息上。 这种治疗方法适用于患有睡眠相位后移症候群(DSWPD)的人,即总体上不能通
  • 达戈贝尔特三世达戈贝尔特三世(法语:Dagobert III,699年-715年9月3日),法兰克王国墨洛温王朝国王(711年4月23日-715年9月3日在位)。希尔德贝尔特三世的儿子。达戈贝尔特三世于711年继承父亲留下的三
  • 英雄联盟全球总决赛英雄联盟全球总决赛(英语:League of Legends World Championship Series,也被称为英雄联盟世界大赛、简称为Worlds)为是由Riot Games公司举行的英雄联盟电子竞技大赛,也是目前全