置信水平

✍ dations ◷ 2024-12-22 15:55:55 #置信水平
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量 X {displaystyle {cal {X}}} 服从分布 F {displaystyle {cal {F}}} ,又假设 θ {displaystyle theta } 是 F {displaystyle {cal {F}}} 的参数之一。假设我们的数据采集计划将要独立地抽样 n {displaystyle n} 次,得到一个随机样本 { X 1 , … , X n } {displaystyle {X_{1},ldots ,X_{n}}} ,注意这里所有的 X i {displaystyle X_{i}} 都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本 X = { X 1 , … , X n } {displaystyle X={X_{1},ldots ,X_{n}}} 的一个函数,且不得依赖于任何未知参数) u ( X 1 , … , X n ) , v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})} 满足 u ( X 1 , … , X n ) < v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})} 使得:则称 ( u ( X 1 , … , X n ) , v ( X 1 , … , X n ) ) {displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)} 为一个用于估计参数 θ {displaystyle theta } 的 1 − α {displaystyle 1-alpha } 置信区间,其中的, α {displaystyle alpha } 称为置信水平。接续随机样本版本的定义,现在,对于随机变量 X {displaystyle {cal {X}}} 的一个已经观测到的样本 { x 1 , … , x n } {displaystyle {x_{1},ldots ,x_{n}}} ,注意这里用小写x表记的 x i {displaystyle x_{i}} 都是已经观测到的数字,没有随机性了,定义基于数据的 1 − α {displaystyle 1-alpha } 置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定 u = − ∞ {displaystyle u=-infty } 或者 v = + ∞ {displaystyle v=+infty } ,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1 − α {displaystyle 1-alpha } 水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用" ± {displaystyle pm } "进行简记:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本 X 1 , … , X n {displaystyle {X_{1},ldots ,X_{n}}} ,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间,可以用来检验具有相应的显著水平为 α {displaystyle alpha } 的双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差 σ 2 {displaystyle sigma ^{2}} ,在 α {displaystyle alpha } 显著水平下检验:检验方法是:当且仅当相应的 1 − α {displaystyle 1-alpha } 水平置信区间不包含 μ 0 {displaystyle mu _{0}} 时拒绝零假设 H 0 {displaystyle H_{0}}例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间也可以用来检验如下两个显著水平为 α / 2 {displaystyle alpha /2} 的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验 H 1 : μ > μ 0 {displaystyle H_{1}:mu >mu _{0}} ,当且仅当双边置信区间的左端点大于 μ 0 {displaystyle mu _{0}} 时拒绝零假设。

相关

  • 多貌生物多貌生物(学名:Diaphoretickes)也被称为AH/SAR总类群,是真核生物的一个类群它包括:它同时也是原始色素体生物、有孔虫、囊泡藻三者的总和,但鉴于囊泡藻已被证实不是单系群,这只是把
  • 根达综合症根达综合症 是卟啉症的一种。它十分罕有,为先天的综合症。原因是酵素或尿卟啉原Ⅲ共合成酶不足,目前可利用脐带血等干细胞的技术予以治疗。
  • 漠南非洲撒哈拉以南非洲(英语:Sub-Saharan Africa),指撒哈拉沙漠以南的非洲地区,又称亚撒哈拉地区、下撒哈拉、漠南非洲,也有称黑非洲(Negro Africa)。政治上,包括了所有或部分领土位于撒哈拉
  • HNC异氢氰酸或异氰化氢,是一种无机化合物,化学式为HNC。它是氢氰酸(HCN)的互变异构体,在互变平衡处于劣势。它在天体化学中的重要性在于它广泛存在于星际物质中。
  • 帝舜.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.larger{fon
  • 莫尔纳尔威廉·艾斯科·莫纳(英语:William Esco Moerner;1953年-),化学家,单分子光谱和荧光光谱领域的著名专家。现为美国斯坦福大学哈利·S·莫什讲座教授(Harry S. Mosher Professor)。2014
  • 生精小管生精小管(英语:seminiferous tubule; 拉丁语:tubuli seminiferi;又称曲细精管)位于睾丸,是减数分裂特定位置并继而制造配子(即精子)。生精小管的上皮由支持细胞或称塞尔托利氏细胞组
  • 生产及消耗各国能源生产及消耗列表列出各国的能量总生产量及消耗量。
  • 中国信托中国信托商业银行,简称中国信托、中信银行、中信商银、CTBC,是中华民国的商业银行之一,于1966年由辜振甫所创立,目前为中国信托金融控股公司的全资拥有子公司。中国信托商业银行
  • 卫生事务人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学医疗卫生,又称健康照护(英语:Health care