置信水平

✍ dations ◷ 2025-02-23 20:23:16 #置信水平
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量 X {displaystyle {cal {X}}} 服从分布 F {displaystyle {cal {F}}} ,又假设 θ {displaystyle theta } 是 F {displaystyle {cal {F}}} 的参数之一。假设我们的数据采集计划将要独立地抽样 n {displaystyle n} 次,得到一个随机样本 { X 1 , … , X n } {displaystyle {X_{1},ldots ,X_{n}}} ,注意这里所有的 X i {displaystyle X_{i}} 都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本 X = { X 1 , … , X n } {displaystyle X={X_{1},ldots ,X_{n}}} 的一个函数,且不得依赖于任何未知参数) u ( X 1 , … , X n ) , v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})} 满足 u ( X 1 , … , X n ) < v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})} 使得:则称 ( u ( X 1 , … , X n ) , v ( X 1 , … , X n ) ) {displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)} 为一个用于估计参数 θ {displaystyle theta } 的 1 − α {displaystyle 1-alpha } 置信区间,其中的, α {displaystyle alpha } 称为置信水平。接续随机样本版本的定义,现在,对于随机变量 X {displaystyle {cal {X}}} 的一个已经观测到的样本 { x 1 , … , x n } {displaystyle {x_{1},ldots ,x_{n}}} ,注意这里用小写x表记的 x i {displaystyle x_{i}} 都是已经观测到的数字,没有随机性了,定义基于数据的 1 − α {displaystyle 1-alpha } 置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定 u = − ∞ {displaystyle u=-infty } 或者 v = + ∞ {displaystyle v=+infty } ,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1 − α {displaystyle 1-alpha } 水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用" ± {displaystyle pm } "进行简记:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本 X 1 , … , X n {displaystyle {X_{1},ldots ,X_{n}}} ,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间,可以用来检验具有相应的显著水平为 α {displaystyle alpha } 的双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差 σ 2 {displaystyle sigma ^{2}} ,在 α {displaystyle alpha } 显著水平下检验:检验方法是:当且仅当相应的 1 − α {displaystyle 1-alpha } 水平置信区间不包含 μ 0 {displaystyle mu _{0}} 时拒绝零假设 H 0 {displaystyle H_{0}}例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间也可以用来检验如下两个显著水平为 α / 2 {displaystyle alpha /2} 的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验 H 1 : μ > μ 0 {displaystyle H_{1}:mu >mu _{0}} ,当且仅当双边置信区间的左端点大于 μ 0 {displaystyle mu _{0}} 时拒绝零假设。

相关

  • 检疫隔离检疫 是风险管理的一种设施。 当人类、动物、植物等,由一个地方进入另一个地方,为防带有传染病等,所以必须进行隔离检疫。本条目出自公有领域:Chisholm, Hugh (编). Quarant
  • 咽鼓管扁桃体咽鼓管扁桃体(tubal tonsil)为组成瓦尔代尔氏扁桃体环(Waldeyer's tonsillar ring)的四大扁桃腺群之一,其中包括有腭扁桃体(Palatine tonsil),舌扁桃体(lingual tonsils),咽扁
  • 滨海边疆区滨海边疆区(俄语:Приморский край,罗马化:Primorskij kraj)是俄罗斯远东联邦管区的一个边疆区,面积164,673平方公里,2010年统计人口1,956,497人。首府是海参崴(符拉迪
  • 沸石沸石是一种含有水架状结构的铝硅酸盐矿物,最早发现于1756年。瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然铝硅酸盐矿石在灼烧时会产生沸腾现象,因此命名为沸石(瑞典文:zeoli
  • 卡托研究所加图研究所(英语:Cato Institute,又译卡托研究所)是一个位于美国华盛顿哥伦比亚特区的自由意志主义智库。是美国五大保守派智库之一。研究所自许的任务是要“扩展公共政策辩论的
  • 5-HTsub4/sub336015562ENSG00000164270ENSMUSG00000026322Q13639P97288NR_104445、NM_000870、NM_001040169、NM_001040172、NM_001040173、NM_001040174、NM_001286410、NM_199453NM_00
  • 福建省截至2019年,中华民国福建省法理上辖有两个二级行政区,全数为县,分别为金门县和连江县。其中,前者是中华民国福建省最大、人口数最多、人口密度最大和下辖三级行政区数最多的二级
  • 素祭素祭(希伯来语:minchah,英语:meal offerings、gift offering或grain offerings)是《圣经·利未记》提到的第二种祭物,这种祭物不包含肉类。素祭经常是单独献上,但也可以与燔祭一同
  • 糖度白利糖度(Degrees Brix,符号°Bx)是测量糖度的单位,代表在20°C情况下,每100克水溶液中溶解的蔗糖克数。Balling刻度最早由波希米亚化学家Karl Balling所提出。Brix刻度则是在Bal
  • 路易九世路易九世(法语:Louis IX;1214年4月25日-1270年8月25日),绰号贤人(法语:le Prudhomme),俗称圣路易(法语:Saint Louis),自1226年至去世为卡佩王朝法兰西国王,在位超过43年。天主教会1297年封