置信水平

✍ dations ◷ 2025-04-08 19:46:19 #置信水平
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量 X {displaystyle {cal {X}}} 服从分布 F {displaystyle {cal {F}}} ,又假设 θ {displaystyle theta } 是 F {displaystyle {cal {F}}} 的参数之一。假设我们的数据采集计划将要独立地抽样 n {displaystyle n} 次,得到一个随机样本 { X 1 , … , X n } {displaystyle {X_{1},ldots ,X_{n}}} ,注意这里所有的 X i {displaystyle X_{i}} 都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本 X = { X 1 , … , X n } {displaystyle X={X_{1},ldots ,X_{n}}} 的一个函数,且不得依赖于任何未知参数) u ( X 1 , … , X n ) , v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})} 满足 u ( X 1 , … , X n ) < v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})} 使得:则称 ( u ( X 1 , … , X n ) , v ( X 1 , … , X n ) ) {displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)} 为一个用于估计参数 θ {displaystyle theta } 的 1 − α {displaystyle 1-alpha } 置信区间,其中的, α {displaystyle alpha } 称为置信水平。接续随机样本版本的定义,现在,对于随机变量 X {displaystyle {cal {X}}} 的一个已经观测到的样本 { x 1 , … , x n } {displaystyle {x_{1},ldots ,x_{n}}} ,注意这里用小写x表记的 x i {displaystyle x_{i}} 都是已经观测到的数字,没有随机性了,定义基于数据的 1 − α {displaystyle 1-alpha } 置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定 u = − ∞ {displaystyle u=-infty } 或者 v = + ∞ {displaystyle v=+infty } ,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1 − α {displaystyle 1-alpha } 水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用" ± {displaystyle pm } "进行简记:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本 X 1 , … , X n {displaystyle {X_{1},ldots ,X_{n}}} ,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间,可以用来检验具有相应的显著水平为 α {displaystyle alpha } 的双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差 σ 2 {displaystyle sigma ^{2}} ,在 α {displaystyle alpha } 显著水平下检验:检验方法是:当且仅当相应的 1 − α {displaystyle 1-alpha } 水平置信区间不包含 μ 0 {displaystyle mu _{0}} 时拒绝零假设 H 0 {displaystyle H_{0}}例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间也可以用来检验如下两个显著水平为 α / 2 {displaystyle alpha /2} 的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验 H 1 : μ > μ 0 {displaystyle H_{1}:mu >mu _{0}} ,当且仅当双边置信区间的左端点大于 μ 0 {displaystyle mu _{0}} 时拒绝零假设。

相关

  • 人类生态学人类生态学是一门跨领域研究,以研究人类、人与环境的互动和组织为主要内容,其主题包括人类与其自然环境、社会环境,及建成环境之间的关系。生态学作为一门学科在专业上来说是起
  • 费洛蒙信息素(pheromone),也称做外激素,一种化学传讯素(英语:semiochemical)(讯息化合物,semiochemical) ,指的是由一个个体分泌到体外,被同物种的其他个体通过嗅觉器官(如副嗅球、犁鼻器)察觉,使
  • 莫瓦桑亨利·莫瓦桑(法语:Henri Moissan,1852年9月28日-1907年2月20日),法国化学家,获得1906年诺贝尔化学奖。莫瓦桑长期从事无机化学的研究,他在不良的实验室条件下,首次成功地离析了元素
  • 休达休达(西班牙语:Ceuta,柏柏尔语:Sebta,阿拉伯语:سبتة‎,转写:Sabtah,后两者音译为“塞卜泰”),是西班牙两个海外自治市之一 (另外一个是梅利利亚),位于非洲马格里布的最北部,直布罗陀海
  • span class=nowrapHgsub2/subSOsub4/sub/span&g硫酸亚汞是一种无机化合物,化学式为Hg2SO4。硫酸亚汞可以由Hg2(NO3)2溶液和硫酸反应得到,或者由SO2或Hg还原硫酸汞制备。硫酸亚汞受热分解:硫酸亚汞中的Hg(I)可以被一些氧化剂
  • 软焊软钎焊、软焊(英语:soldering)是一种利用熔化熔点较低金属来连结其他金属工件的制造过程。被熔化的金属一般称为焊料,一般其熔点低于摄氏400度。软钎焊和硬钎焊的差异是在于焊料
  • 臂神经丛臂神经丛(英文:brachial plexus)为一神经丛。起源于第五节颈椎神经(C5)到第一节胸椎神经(T1)的前支。在头、颈、上肢内连接锁骨、上臂、前臂、手的神经丛的名称。臂神经丛会由cervi
  • 随机行走模型随机游走(英语:Random Walk,缩写为 RW),是一种数学统计模型,它是一连串的轨迹所组成,其中每一次都是随机的。它能用来表示不规则的变动形式,如同一个人酒后乱步,所形成的随机过程记录
  • Csub2/subOsub2/sub乙烯二酮也称为“二氧化二碳”,是一种早于1913年被提出,但直到2015年才被证实存在的碳氧化物。乙烯二酮的分子式为C2O2, 结构式为O=C=C=O。C2O2可以看作是CO的二聚体或乙醛酸的
  • 巧克力蛋糕巧克力蛋糕(英语:Chocolate cake)是一种以巧克力制成的蛋糕,于生日派对及婚礼常见,也是常见的甜品之一。巧克力蛋糕有时被误称为黑森林蛋糕,虽然两者实际上有分别。巧克力蛋糕的种