首页 >
扁球体
✍ dations ◷ 2025-11-26 19:03:34 #扁球体
类球面是一种二次曲面。二维的椭圆有两个主轴,称为长轴与短轴。在三维空间里,将一个椭圆绕着其任何一主轴旋转,则可得到一个类球面。用另外一种方法来描述,类球面是一种椭球面。采用直角坐标
(
x
,
y
,
z
)
{displaystyle (x, y, z),!}
,椭球面可以表达为其中,
a
{displaystyle a,!}
与
b
{displaystyle b,!}
分别是椭球面在x-轴与y-轴的赤道半径,
c
{displaystyle c,!}
是椭球面在z-轴的极半径,这三个正值实数的半径决定了椭球面的形状。 以z-轴为旋转轴的类球面
a
=
b
{displaystyle a=b,}
,它的方程为:扁球面c < a,它的表面积为:扁球面是半长轴为a而半短轴为c的椭圆围绕z-轴旋转而形成的,因此e可看作为离心率。长球面c > a,它的表面积为:长球面是半长轴为c而半短轴为a的椭圆围绕z-轴旋转而形成的,因此e可看作离心率。类球的体积是
4
3
π
a
2
c
{displaystyle {frac {4}{3}}pi a^{2}c,!}
。假若,一个类球面被参数化为其中,
β
{displaystyle beta ,!}
是参数纬度(parametric latitude),
−
π
2
<
β
<
π
2
{displaystyle -{frac {pi }{2}}<beta <{frac {pi }{2}},!}
,
λ
{displaystyle lambda ,!}
是经度,
−
π
<
λ
<
+
π
{displaystyle -pi <lambda <+pi ,!}
。那么,类球面的高斯曲率(Gaussian curvature)是类球面的平均曲率(mean curvature)是对于类球面,这两种曲率永远是正值的。所以,类球面的每一点都是椭圆的。
相关
- 购买力平价购买力平价(英语:Purchasing Power Parity,缩写PPP),是一种根据各国不同的价格水平计算出来的货币之间的等值系数,使我们能够在经济学上对各国的国内生产总值进行合理比较,这种理论
- 多普勒超声医学超声检查(超声检查、超声诊断学)(英语:Medical ultrasound)是一种基于超声的医学影像诊断技术,使肌肉和内脏器官等软组织可视化,包括其尺寸、结构和病理学病灶。产科超声检查广
- 欧洲盟军最高司令欧洲盟军最高司令部(英语:Supreme Headquarters Allied Powers Europe,缩写SHAPE)在2003年前是北大西洋公约组织欧洲盟军司令部(Allied Command Europe,ACE)的总部,2003年后则成为了
- δ逆转录病毒属δ-逆转录病毒属 (Deltaretrovirus)是一个逆转录病毒科的属。它外源几组在哺乳动物身上发现。例子有牛白血病病毒和人类T型淋巴细胞白血病病毒。牛白血病病毒 人类T型淋巴细
- 禽成髓细胞瘤病毒α反转录病毒属(学名:Alpharetrovirus)是反转录病毒目反转录病毒科下的一个属,此属的病毒具有C型的外观。α反转录病毒会在野鸟、家禽和鼠身上造成肉瘤和肿瘤。鸟白血病病毒就是
- 环鸟苷单磷酸环磷酸鸟苷(cGMP或cyclic GMP或3'-5'-cyclic guanosine monophosphate),跟环磷酸腺苷(cAMP)一样,是一种具有细胞内信息传递作用的第二信使(second messengers),但两者的生物效应却恰
- D08(Antifungals for dermatological use)(Emollients and protectives)(Preparations for treatment of wounds and ulcers)(Antipruritics, including antihistamines, anesthetics,
- 麦克斯韦方程组麦克斯韦方程组(英语:Maxwell's equations)是一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。该方程组由四个方程组成,分别是描述电荷如何产生电场的高斯定律、
- 1044年重要事件及趋势重要人物
- 共同警备区共同警备区(英语:Joint Security Area,简称JSA)是坐落于朝鲜半岛板门店附近的一个小区域,也被许多媒体称为停战村。2000年CJ Entertainment(英语:CJ E&M Film Business Division)曾
