集肤效应

✍ dations ◷ 2025-10-13 22:52:13 #电子学,物理现象

集肤效应(又称趋肤效应或直译作表皮效应,英语:Skin effect)是指导体中有交流电或者交变电磁场时,导体内部的电流分布不均匀的一种现象。随着与导体表面的距离逐渐增加,导体内的电流密度呈指数递减,即导体内的电流会集中在导体的表面。从与电流方向垂直的横切面来看,导体的中心部分几乎没有电流流过,只在导体边缘的部分会有电流。简单而言就是电流集中在导体的“皮肤”部分,所以称为集肤效应。产生这种效应的原因主要是变化的电磁场在导体内部产生了涡旋电场,与原来的电流相抵消。

趋肤效应最早在英国应用数学家贺拉斯·兰姆(Horace Lamb)1883年发表的一份论文中提及,只限于球壳状的导体。1885年,英国物理学家奥利弗·赫维赛德(Oliver Heaviside)将其推广到任何形状的导体。趋肤效应使得导体的电阻随着交流电的频率增加而增加,并导致导线传输电流时效率减低,耗费金属资源。在无线电频率的设计、微波线路和电力传输系统方面都要考虑到趋肤效应的影响。

当单色平面电磁波从真空垂直射入表面为平面的无限大导体中时,随着与导体表面的距离逐渐增加,导体内的电流密度呈指数递减

其中, J s {\displaystyle J_{s}} 处到导线表面的截面上通过的电流, I {\displaystyle I} 和为0阶的开尔文-贝塞尔函数的相应原函数(具体见下)。

考虑一个半径为,长度无限大的圆柱形导体。假设电磁场是交变的,圆柱中有频率为的正弦交流电流。由麦克斯韦方程组,

麦克斯韦-法拉第方程:

麦克斯韦-安培方程:

其中:

在导体中,欧姆定律的微分形式为:

σ是导体的电导率。

我们假设导体是均匀的,于是导体各处的μ和σ都相同。于是有:

在圆柱坐标系(, θ, )(为圆柱导体的轴心)中,设电磁波随轴前进,由对称性,电流密度是一个只和有关的函数:

取麦克斯韦-法拉第方程两边的旋度,就有:

也就是:

由之前对电流密度的假设, d i v J = 0 {\displaystyle \mathrm {div} \,\mathbf {J} =0} 2就得到电流密度应该满足的方程:

在进行代换 ξ = i k r {\displaystyle \xi =i\,k\,r} = 0的连续性,方程的解具有 J 0 ( ξ ) {\displaystyle J_{0}(\xi )} 0是零阶的第一类贝塞尔函数。于是:

其中0是一个常数,为:

其中是趋肤深度, δ = 2 ω σ μ {\displaystyle \delta ={\sqrt {\frac {2}{\omega \,\sigma \,\mu }}}} 和是0阶的开尔文-贝塞尔函数。

于是通过整个截面的电流总和就是:

记和为相应的原函数:

便有如下更简洁的形式:

我们还可以计算从圆柱表面到离轴心距离处的电流总和:

于是有电流的分布函数:

一般来说,在给定的频率下,使得导线对交流电的电阻增加百分之十的直径大约是:

以上的导线对交流电的电阻只对于孤立的导线成立。对于两根邻近的导线,交流电阻会受到邻近效应的影响而显著增大。

一种减缓趋肤效应的方法是采用所谓的利兹线(英语:Litz wire)(源自德语:,意为“编织起来的线”)。利兹线采用将多条金属导线相互缠绕的方法,使得电磁场能够比较均匀地分布,这样各导线上的电流分布就会较为平均。使用利兹线后,产生显著趋肤效应的频率可以从数千赫兹提高到数兆赫兹。利兹线一般应用在高频交流电的传输中,可以同时减缓趋肤效应和邻近效应。

高电压大电流的架空电力线路通常使用钢芯铝绞线,这样能使铝质部分的工作部分温度降低,减低电阻率,并且由于趋肤效应,电阻率较大的钢芯上承载极少的电流,因而无关紧要。

还有将实心导线换成空心导线管,中间补上绝缘材料的方法,这样可以减轻导线的重量。

在传输的频率在甚高频或微波级别时,一般会使用镀银(已知的除超导体外最好的导体)的导线,因为这时趋肤深度如此之浅,以至于更厚的银层已经是浪费了。

趋肤效应使得交变电流只通过导体的表面,因此电流只在其表面产生热效应。钢铁工业中利用趋肤效应来为钢进行表面淬火,使钢材表面的硬度增大。

趋肤效应也可以描述为:导体中交变电磁场的强度随着进入导体的深度而呈指数递减,因此在防晒霜中混入导体微粒(一般是氧化锌和氧化钛),就能使阳光中的紫外线(高频电磁波)的强度减低。这便是物理防晒的原理之一。此外,趋肤效应也是电磁屏蔽的方法之一,利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置,这也是电梯里手机信号不好的原因。

频率为10 GHz(微波)时各种材料的集肤深度:

在铜质导线中,趋肤深度和频率的关系大致如下:

相关

  • 罗讷河口省罗讷河口省(法文:Bouches-du-Rhône)是法国南部普罗旺斯-阿尔卑斯-蓝色海岸大区所辖的省份。该省编号为13,首府为马赛。罗讷河口省早在古罗马时代是古罗马帝国的一部分,由于濒临
  • 自然辩证法《自然辩证法》(德语:Dialektik der Natur)是1883年德国哲学家弗里德里希·恩格斯一部尚未完成的著作。在这部作品中,恩格斯总结了自己多年来对自然科学研究,将马克思主义观点,尤
  • 联合技术联合技术公司(英文:United Technologies Corporation)是美国第22大制造商,主要经营项目包括飞机发动机、直升机、空调系统、燃料电池、电梯、滚梯、防火与安全设备、建筑设备和
  • 柯柏联盟学院www.cooper.edu库伯联盟学院(Cooper Union,全名为The Cooper Union for the Advancement of Science and Art,“库伯高等科学艺术联盟学院”)是一所位于美国纽约州纽约市曼哈顿
  • 九节坂九节坂(韩语:구절판)是古代是韩国宫廷料理中的前菜,也可以指盛放该料理的容器。9种食物放至在有9格的八边形攒盒的传统韩国料理,九节坂中间一格一般放置薄饼,周围环绕的8个格按五
  • 瓦莱里·吉斯卡尔·德斯坦瓦莱里·吉斯卡尔·德斯坦(Valéry Giscard d'Estaing,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans
  • 瑟西 (漫画)瑟西(英语:Sersi),是一名在漫威漫画中出现的虚构女超级英雄。为永恒族(英语:Eternals (comics))的成员。她首次出现在1976-1978年的漫画系列《永恒族(英语:Eternals (comics))》中。她
  • M5刺刀M5刺刀(英语:M5 Bayonet)是一柄由美国于1953年采用的刺刀、用以取代美国.30口径M1加兰德步枪过去的其他刺刀。它的整体建于M3格斗刀以上。它使用M8A1刀鞘。在朝鲜战争期间,美军
  • 尚永王尚永(琉球语:尚永/ショーエイ  ?;1559年-1588年)是琉球国第二尚氏王朝第六代国王。他是尚元王的第二王子。1573年至1588年在位。神号英祖仁耶添按司添(琉球语:英祖仁耶添按司添/イ
  • IOSYSIOSYS(イオシス)是设立在日本北海道札幌市的同人组织。除此之外,也有登录法人注册成为有限公司。在1998年设立。在同人活动方面,主要是参与制作同人音乐(多为东方Project相关编曲