复分析是研究复变函数,特别是亚纯函数和复变解析函数的数学理论。
研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。复变分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。
复变函数,是自变量和应变量皆为复数的函数。更确切的说,复变函数的值域与定义域都是复平面的子集。在复变分析中,自变量又称为函数的“宗量”。
对于复变函数,自变量和应变量可分成实部和虚部:
用另一句话说,就是函数的子集。 设内部的点的积分。
在复变分析中,一个复平面的开子集,以及中的一点是复平面中一点,是复平面上的一个单连通开子集,1、……、是复平面上有限个点,是定义在 \ {1、……、}的全纯函数。如果γ是一条把1、……、包围起来的可求长曲线,但不经过任何一个,并且其起点与终点重合,那么:
一些难于计算的实函数的积分可以通过转化为复变函数,然后利用留数定理来进行计算。