素数

✍ dations ◷ 2024-12-25 00:01:40 #素数,整数数列,使用过时的math标签格式的页面

N Z Q R C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} } 进数
数学常数

圆周率 π = 3.141592653 {displaystyle pi =3.141592653dots } )。

除了前述可应用于任何自然数n之上的测试外,一些更有效率的素性测试适用于特定数字之上。例如,卢卡斯素性测试需要知道 − 1的素因数,而卢卡斯-莱默素性测试则需要以 + 1的素因数作为输入。例如,这些测试可应用在检查

是否为一素数。此类形式的素数称之为阶乘素数。其他具p+1或p-1之类形式的素数还包括索菲·热尔曼素数(具2p+1形式的素数,其中p为素数)、素数阶乘素数、费马素数与梅森素数(具2 − 1形式的素数,其中p为素数)。卢卡斯-雷默素性测试对这类形式的数特别地快。这也是为何自电脑出现以来,最大已知素数总会是梅森素数的原因。

费马素数具下列形式

其中,k为任意自然数。费马素数以皮埃尔·德·费马为名,他猜想此类数字均为素数。费马认为均为素数的理由为此串列的前5个数字(3、5、17、257及65537)为素数。不过,5却为合数,且直至2015年发现的其他费马数字也全都是合数。一个正n边形可用尺规作图,当且仅当

其中,m为任意个不同费马素数之乘积,及i为任一自然数,包括0。

下列表格给出各种形式的最大已知素数。有些素数使用分散式计算找到。2009年,互联网梅森素数大搜索因为第一个发现具至少1,000万个数位的素数,而获得10万美元的奖金。电子前哨基金会亦为具至少1亿个数位及10亿个数位的素数分别提供15万美元及25万美元的奖金。

给定一合数n,给出一个(或全部)素因数的工作称之为n的约数分解。椭圆曲线分解是一个依靠椭圆曲线上的运算来分解素因数的算法。

1975年,数论学家唐·察吉尔评论素数 {displaystyle n}  <  < 2 − 2,其中n为大于3的任一自然数。第一个公式可由威尔逊定理导出,每个不同的n会对应到不同的素数,除了数字2会有多个n对应到外。不过,这两个公式都需要先计算出A或μ的值来。

不存在一个只会产生素数值的非常数多项式,即使该多项式有许多个变量。不过,存在具9个变量的丢番图方程,其参数具备以下性质:该参数为素数,当且仅当其方程组有自然数解。这可被用来获得其所有“正值”均为素数的一个公式。

素数计算函数π(n)被定义为不大于n的素数之数量。例如,π(11) = 5,因为有5个素数小于或等于11。已知有算法可比去计算每个不大于n的素数更快的速率去计算π(n)的值。素数定理表示,π(n)的可由下列公式近似给出:

亦即,π(n)与等式右边的值在n趋近于无限大时,会趋近于1。这表示,小于n的数字为素数的可能性(大约)与n的数位呈正比。对π(n)更精确的描述可由对数积分给出:

素数定理亦蕰涵著对第n个素数(如1 = 2、2 = 3等)的大小之估算:当数字大到某一程度时,的值会变得约略为 log()。特别的是,素数间隙,即两个连续素数+1间的差会变得任意地大。后者可由数列 ! + 2, ! + 3,…, ! + (其中n为任一自然数)看出。

等差数列是指由被一固定数(模)q除后会得到同一余数的自然数所组成之集合。例如:

是一个等差数列,模q = 9。除了3以外,其中没有一个数会是素数,因为3 + 9 = 3(1 + 3),所以此一数列里的其他数字均为合数。(一般来所有大于q的素数都具有#· + 的形式,其中0 <  < #,且m没有不大于q的素因数。)因此,数列

只在a与q 互素(其最大公约数为1)之时,可以有无限多个素数。若满足此一必要条件,狄利克雷定理表示,该数列含有无限多个素数。下图描述 = 9时的情形:数字每遇到9的倍数就会再再由下往上缠一次。素数以红底标记。行(数列)开始于a = 3, 6, 9者至多只包含一个素数。其他行(a = 1, 2, 4, 5, 7, 8)则均包含无限多个素数。更甚之,素数以长期来看,会均匀分布于各行之中,亦即每个素数模9会与6个数其中一数同余的概率均为1/6。

格林-陶定理证明,存在由任意多个素数组成的等差数列。一个奇素数p可表示成两个平方数之和 = 2 + 2,当且仅当p同余于1模4(费马平方和定理)。

欧拉指出函数

于 0 ≤ < 40时会给出素数,此一事实导致了艰深的代数数论,或更具体地说为黑格纳数。当n更大时,该函数会给出合数值。哈代- 李特伍德猜想(Hardy-Littlewood conjecture)能给出一个有关具整数系数a、b与c的二次多项式

的值为素数之概率的一个渐近预测,并能以对数积分Li(n)及系数a、b、c来表示。不过,该程式已被证实难以取得:仍未知是否存在一个二次多项式( ≠ 0)能给出无限多个素数。乌岚螺旋将所有自然数以螺旋的方法描绘。令人惊讶的是,素数会群聚在某些对角线上,表示有些二次多项式会比其他二次多项式给出更多个素数值来。

黎曼ζ函数ζ(s)被定义为一无穷级数

其中,s为实数部分大于1的一个复数。由算术基本定理可证得,该级数会等于下面的无穷乘积

ζ函数与素数密切相关。例如,存在无限多个素数这个事实也可以使用ζ函数看出:若只有有限多个素数,则ζ(1)将会是个有限值。不过,调和级数1 + 1/2 + 1/3 + 1/4 + ...会发散,所以必须有无限多个素数。另一个能看见ζ函数的丰富性,并一瞥现代代数数论的例子为下面的恒等式(巴塞尔问题,由欧拉给出):

ζ(2)的倒数6/π2,是两个随机选定的数字会互素的概率。

未被证明的“黎曼猜想”,于1859年提出,表示除 = −2, −4, ...,外,ζ函数所有的根,其实数部分均为1/2。此一猜想与素数间的关连在于,该猜想实际上是在说,素数在正整数中出现频率和统计学的随机不同;若假设为真,素数计算函数便可有效掌握,在大数时不再需要近似求值。从物理的观点来看,这大约是在说,素数分布的不规则性仅来自于随机的噪声。从数学的观点来看,则大约是在说,素数的渐近分布(素数定理表示小于x的素数约有x/log x个)在x周围的区间内,于区间长度远小于x的平方根时亦成立。此一猜想一般认为是正确的。

除了黎曼猜想之外,还有许多其他的猜想存在。虽然这些猜想的陈述大多很简单,但许多猜想经过了数十年仍提不出证明,如4个兰道问题,从1912年提出至今仍然未解。其中一个为哥德巴赫猜想,该猜想认为每个大于2的偶数n都可表示成两个素数之和。至于2011年2月,这个猜想对最大达 = 2 · 1017的所有数字都会成立。较弱形式的哥德巴赫猜想已被证明,如维诺格拉多夫定理,该定理表示每个足够大的奇数都可表示成三个素数之和。陈氏定理表示,每个足够大的偶数都可表示成一个素数与一个半素数(两个素数的乘积)之和。此外,任一个偶数均可写成六个素数之和。数论研究这些问题的分支称之为加法数论。反哥德巴赫猜想,所有的正偶数n都可以表示成两个素数之差,但此猜想可由波利尼亚克猜想类推证明。

其他猜想处理是否有无限多个具某些限制的素数这类问题。据猜想,存在无限多个斐波那契素数与无限多个梅森素数,但没有无限多个费马素数。还不知道是否存在无限多个维费里希素数与欧几里得素数。

第三种类型的猜想涉及到素数的分布情形。据猜想,存在无限多对孪生素数,即有无限多对相差2的素数(孪生素数猜想)。波利尼亚克猜想是比孪生素数猜想更强的一个猜想,该猜想表示存在无限多对相差2n的连续素数。据猜想,存在无限多个具2 + 1形式的素数。上述猜想都是申策尔猜想的特例。布罗卡猜想表示,在两个大于2的连续素数之平方数之间,总是会有至少4个素数。勒让德猜想表示,对每个正整数n,2与( + 1)2间总会存在一个素数。克拉梅尔猜想可导出勒让德猜想。

长期以来,数论,尤其是对素数的研究,一般都会被认为是典型的纯数学,除了求知的趣味之外,没有其他应用。特别是,一些数论学家,如英国数学家戈弗雷·哈罗德·哈代即对其工作绝对不会有任何在军事上的重大性感到自豪。然而,此一观点在1970年代时遭到粉碎,当素数被公开宣布可以作为产生公钥加密算法的基础之时。素数现在也被用在杂凑表与伪乱数产生器(英语:Pseudo-random number generator)里。

旋转机被设计成在每个转片上有不同数目的销,在每个转片上的销的数量都会是素数,亦或是会与其他转片上的销的数量互素。这有助于在重复所有的组合之前,让所有转片的可能组合都能出现过一次。

国际标准书号的最后一码为校验码,其算法使用到了11是个素数的这个事实。

在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数最好设计成素数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的素数次数的使用也得到了证明。实验表明,素数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。

以素数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。

“模运算”使用下列数字修改了一般的运算

其中n是个固定的自然数,称之为“模”。计算加法、减法及乘法都与一般的运算一样,不过负数或大于 − 1的数字出现时,会被除以n所得的余数取代。例如,对n=7,3+5为1,而不是8,因为8除以7余1。这通常念为“3+5同余于1模7”,并标记为

同样地,6 + 1 ≡ 0 (mod 7)、2 - 5 ≡ 4 (mod 7),因为 -3 + 7 = 4,以及3 · 4 ≡ 5 (mod 7),因为12除以7余5。加法与乘法在整数里常见的标准性质在模运算里也依然有效。使用抽象代数的说法,由上述整数所组成之集合,亦标记为Z/nZ,且因此为一可交换环。不过,除法在模运算里不一定都是可行的。例如,对n=6,方程

的解x会类比于2/3,无解,亦可透过计算3 · 0、...、3 · 5模6看出。不过,有关素数的不同性质如下:除法在模运算里是可行的,当且仅当n为素数。等价地说,n为素数,当且仅当所有满足2 ≤ ≤ − 1的整数m都会与n 互素,亦即其公约数只有1。实际上,对n=7,方程

会有唯一的解 = 3。因此,对任何素数p,Z/Z(亦标记为F)也会是个体,或更具体地说,是个有限域,因为该集合包含有限多(即p)个元素。

许多定理可以透过从此一抽象的方式检查F而导出。例如,费马小定理表示

,其中a为任一不被p整除的整数。该定理即可使用这些概念证得。这意味着

吾乡-朱加猜想表示,上述公式亦是p为素数的必要条件。另一个费马小定理的推论如下:若p为2与5之外的其他素数,1/总是个循环小数,其周期为 − 1或 − 1的约数。分数1/依q(10以外的整数)为基底表示亦有类似的效果,只要p不是q的素因数的话。威尔逊定理表示,整数 > 1为素数,当且仅当阶乘 ( − 1)! + 1可被p整除。此外,整数n > 4为合数,当且仅当 ( − 1)!可被n整除。

许多数学领域里会大量使用到素数。举有限群的理论为例,西罗定理即是一例。该定理表示,若G是个有限群,且为素数p可整除G的阶的最大幂次,则G会有个阶的子群。此外,任意素数阶的群均为循环群(拉格朗日定理)。

几个公开金钥加密算法,如RSA与迪菲-赫尔曼金钥交换,都是以大素数为其基础(如512位元的素数常被用于RSA里,而1024位元的素数则一般被迪菲-赫尔曼金钥交换所采用)。RSA依靠计算出两个(大)素数的相乘会比找出相乘后的数的两个素因数容易出许多这个假设。迪菲-赫尔曼金钥交换依靠存在模幂次的有效算法,但相反运算的离散对数仍被认为是个困难的问题此一事实。

周期蝉属里的蝉在其演化策略上使用到素数。蝉会在地底下以幼虫的形态度过其一生中的大部分时间。周期蝉只会在7年、13年或17年后化蛹,然后从洞穴里出现、飞行、交配、产卵,并在至多数周后死亡。此一演化策略的原因据信是因为若出现的周期为素数年,掠食者就很难演化成以周期蝉为主食的动物。若周期蝉出现的周期为非素数年,如12年,则每2年、3年、4年、6年或12年出现一次的掠食者就一定遇得到周期蝉。经过200年以后,假设14年与15年出现一次的周期蝉,其掠食者的平均数量,会比13年与17年出现一次的周期蝉,高出2%。虽然相差不大,此一优势似乎已足够驱动天择,选择具素数年生命周期的这些昆虫。

据猜测,ζ函数的根与复数量子系统的能阶有关。

素数的概念是如此的重要,以致此一概念被以不同方式推广至数学的不同领域里去。通常,“质”(prime)可在适当的意义下,用来表示具有最小性或不可分解性。例如,质体是指一个包含0与1的体F的最小子域。质体必为有理数或具有p个元素的有限域,这也是其名称的缘由。若任一对象基本上均可唯一地分解成较小的部分,则这些较小的部分也会用“质”这个字来形容。例如,在纽结理论里,质纽结是指不可分解的纽结,亦即该纽结不可写成两个非平凡纽结的连通和。任一纽结均可唯一地表示为质纽约的连通和。质模型与三维质流形亦为此类型的例子。

素数应用于任一可交换环R(具加法、减法与乘法的代数结构)的元素,可产生两个更为一般的概念:“素元”与“不可约元素”。R的元素称为素元,若该元素不为0或单位元,且给定R内的元素x与y,若p可除以xy,则p可除以x或y。一元素称为不可约元素,若该元素不为单位元,且无法写成两个不是单位元之环元素的乘积。在整数环Z里,由素元所组成的集合等于由不可约元素所组成的集合,为

在任一环R里,每个素元都是不可约元素。反之不一定成立,但在唯一分解整环里会成立。

算术基本定理在唯一分解整环里仍然成立。此类整环的一个例子为高斯整数Z,由具a + bi(其中a与b为任意整数)形式的复数所组成之集合。其素元称之为“高斯素数”。不是所有的素数都是高斯素数:在这个较大的环Z之中,2可被分解成两个高斯素数 (1 + i)与 (1 - i)之乘积。有理素数(即在有理数里的素元),具4k+3形式者为高斯素数;具4k+1形式者则不是。

在环论里,数的概念一般被理想所取代。“素理想”广义化了素元的概念,为由素元产生的主理想,是在交换代数、代数数论与代数几何里的重要工具与研究对象。整数环的素理想为理想 (0)、(2)、(3)、(5)、(7)、(11)、…算术基本定理被广义化成准素分解,可将每个在可交换诺特环里的理想表示成准素理想(为素数幂次的一适合广义化)的交集。

透过环的谱这个概念,素理想成为代数几何对象的点。算术几何也受益于这个概念,且许多概念会同时存在于几何与数论之内。例如,对一扩张域的素理想分解(这是代数数论里的一个基本问题),与几何里的分歧具有某些相似之处。此类分歧问题甚至在只关注整数的数论问题里也会出现。例如,二次域的整数环内的素理想可被用来证明二次互反律。二次互反律讨论下面二次方程

是否有整数解,其中x为整数,p与q为(一般)素数。早期对费马最后定理证明之尝试,于恩斯特·库默尔引入正则素数后达到了高潮。正则素数是指无法在由下列式子(其中0、…、−1为整数,ζ则是能使ζ = 1的复数)

组成的环里,使得唯一分解定理失效的素数。

赋值理论研究由一个体K映射至实数R的某个函数(称之为赋值)。每个此类赋值都能给出一个 K上的拓扑,且两个赋值被称为等价,若两者有相同拓扑。K的素数为一赋值的等价类。例如,一个有理数q的p进赋值被定义为整数(),使得

其中r与s不被p所整除。例如,3(18/7) = 2。p进范数被定义为

特别的是,当一个数字乘上p时,其范数会变小,与一般的绝对赋值(亦称为无限素数)形成明显的对比。当透过绝对赋值完备有理数会得出由实数所组成的体,透过p进范数完备有理数则会得出由p进数所组成的体。实际上,依据奥斯特洛夫斯基定理,上述两种方法是完备有理数的所有方法。一些与有理数或更一般化之整体域有关的算术问题,可能可以被变换至完备(或局部)体上。此一局部-全域原则再次地强调了素数对于数论的重要性。

素数也影响了许多的艺术家与作家。法国作曲家奥立佛·梅湘使用素数创造出无节拍音乐。在《La Nativite du Seigneur》与《Quatre etudes de rythme》等作品里,梅湘同时采用由不同素数给定之长度的基调,创造出不可预测的节奏:第三个练习曲《Neumes rythmiques》中出现了素数41、43、47及53。据梅湘所述,此类作曲方式是“由自然的运动,自由且不均匀的持续运动中获得的灵感”。

NASA科学家卡尔·萨根在他的科幻小说《接触未来》()里,认为素数可作为与外星人沟通的一种方式。这种想法是他与美国天文学家法兰克·德雷克于1975年闲聊时形成的。

许多电影,如《异次元杀阵》()、《神鬼尖兵》()、《越爱越美丽》()及《美丽境界》(),均反映出大众对素数与密码学之神秘的迷恋。保罗·裘唐诺所著的小说《素数的孤独》(The Solitude of Prime Numbers)里,素数被用来比喻寂寞与孤独,被描述成整数之间的“局外人”。

荒木飞吕彦所创作的日本漫画《JoJo的奇妙冒险》第六部《石之海》的反派普奇神父喜欢数素数,他认为素数是孤独的数字,并透过数素数安抚他紧张的情绪。

相关

  • 古典物理经典物理学所涉及的物理学领域通常是一些在量子力学与相对论之前发展出来的理论。经典物理学所概括的精确范围必须依上下文而定。当研讨狭义相对论时,经典物理学指的是在相对
  • 联合技术联合技术公司(英文:United Technologies Corporation)是美国第22大制造商,主要经营项目包括飞机发动机、直升机、空调系统、燃料电池、电梯、滚梯、防火与安全设备、建筑设备和
  • 加勒菲斯绿地加勒菲斯绿地(僧伽罗语:ගාලු මුවදොර පිටිය、泰米尔语:காலிமுகத் திடல்)是斯里兰卡科伦坡的金融和商业区中心沿着印度洋海岸绵延半公里的海滨大道,1
  • 南斯拉夫王国解体 · 内战南斯拉夫王国 (1918年-1945年)是一个位于巴尔干半岛的君主制国家,在一战后成立,直到二战后结束。其领土包括今天的波斯尼亚和黑塞哥维那、塞尔维亚、黑山、北马其
  • 美国地质学会美国地质学会(英语:Geological Society of America)是一个美国地质学的组织。1888年创立于美国纽约州伊萨卡,1967年总部搬迁至科罗拉多州博尔德。创建之初仅有100名会员,后缓慢稳
  • 特斯法耶·阿贝拉特斯法耶·阿贝拉(Tesfaye Abera,1992年3月31日-)是一名埃塞俄比亚田径运动员,主攻马拉松项目。他是2013年世界越野锦标赛成年男子团体冠军。
  • 川端麻衣川端麻衣(12月28日-),日本女性配音员。出身于东京都。贤Production所属。※作品依英文名称及英文原名排序。
  • 班巴萨班巴萨(Banbasa),是印度北阿坎德邦Champawat县的一个城镇。总人口7138(2001年)。该地2001年总人口7138人,其中男性3710人,女性3428人;0—6岁人口1112人,其中男582人,女530人;识字率67.0
  • 势函数势函数可以指:
  • 意大利数学联合会意大利数学联合会 (意大利语: Unione Matematica Italiana),是意大利的一个数学学会。该学会成立于1922年12月7日。第一任主席为萨尔瓦托雷·潘谢勒(Salvatore Pincherle)。 意