伪黎曼流形

✍ dations ◷ 2025-12-10 20:51:13 #伪黎曼流形
在微分几何中,伪黎曼流形(英语:Pseudo-Riemannian manifold),也称为半黎曼流形,是一光滑流形,其上有一光滑、对称、点点非退化的 ( 0 , 2 ) {displaystyle (0,2)} 张量。此张量称为伪黎曼度量或伪度量张量。伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每个正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。每一个非退化对称,双线性形式有一个固定的度量符号 ( p , q ) {displaystyle (p,q)} 。这里 p {displaystyle p} 与 q {displaystyle q} 记作正特征值及负特征值的个数。注意 p + q = n {displaystyle p+q=n} 是流形的维数。黎曼流形就是以 ( n , 0 ) {displaystyle (n,0)} 作为符号。伪黎曼流形的符号 ( p , 1 ) {displaystyle (p,1)} 称为洛伦兹度量。拥有洛伦兹度量的流形都是洛伦兹流形。除黎曼流形外,洛伦兹流形是伪黎曼流形的最重要的子类。因为它常被用于广义相对论。广义相对论首要假设是时空可以转为拥有 ( 3 , 1 ) {displaystyle (3,1)} 符号的洛伦兹流形的模型。和欧几里得空间 R n {displaystyle mathbf {R} ^{n}} 可以被认为是黎曼流形的模型一样,,有平坦闵可夫斯基度量的闵可夫斯基空间(Minkowski space) R p , 1 {displaystyle mathbf {R} ^{p,1}} 是洛伦兹流形的模型空间。特征数为 ( p , q ) {displaystyle (p,q)} 的伪黎曼流形的模型空间是有如下伪度量的 R p , q {displaystyle mathbf {R} ^{p,q}} :有些黎曼度量的基本定理可以推广到伪黎曼的情形。例如黎曼几何基本定理对伪黎曼流形也成立。这使得我们能够在伪黎曼流形上能够使用列维-奇维塔联络和相关的曲率张量。另一方面,黎曼几何的很多定理在推广到伪黎曼的情况下不成立。例如,并不是每个光滑流形都可以有一个给定符号的伪黎曼度量;因为有一些特殊的拓扑阻碍存在。

相关

  • 软壁菌门柔膜细菌目(英语:Mollicutes)软壁菌门(Tenericutes),又译作无壁菌门,是细菌界下的一个门。该门下有一个纲,即柔膜细菌纲(英语:Mollicutes)(Mollicutes)。该门命名于1984年。该门下的典型
  • 蓝婴症青紫婴儿(blue baby),或称为发绀婴儿、蓝婴,是指婴儿因先天性心脏缺损或后天性缺氧,血含氧量较正常人低,造成发绀现象。因患儿身体呈蓝紫色而得名。青紫型先天性心脏病包括:Templat
  • 病人受虐病人受虐或病人忽视是指造成病人不合理痛苦或伤害的作为或是不作为。其中可能包括身体虐待或是性侵犯,也包括不提供必要的食物、身体照顾或医疗协助。病人受虐可能发生在医院
  • 理论物理学理论物理学(英语:Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。:9丰富的想像力、精湛
  • 粗体粗体是在正常字体样式(或字型)的基础上,通过加粗笔画实现的一种字体样式。例如,“维基百科”的粗体样式为“维基百科”。粗体的英文是bold,在字体编辑软件中,往往以B作为加粗字体
  • 意大利人之歌《意大利人之歌》(Il Canto degli Italiani)是意大利的国歌,意大利人常以作词者之名称其为马梅利之歌 (Inno di Mameli),也可以称为意大利的弟兄 (Fratelli d'Italia)。1847年由葛弗
  • RTLRTL可以指:
  • 芭芭拉·乔丹芭芭拉·查理·乔丹 (英语:Barbara Charline Jordan,1936年2月21日-1996年1月17日)是一名美国律师、教育家、政治家与非裔美国人民权运动领袖。作为民主党人,她是美国重建时期之后
  • 克拉伦斯·沃尔顿·李拉海克拉伦斯·沃尔顿·“沃尔特”·李拉海(英语:Clarence Walton "Walt" Lillehei,1918年10月23日-1999年7月5日),美国外科医生,心内直视手术的先驱开创者之一,被称作“心内直视手术之
  • 去极化 (消歧义)去极化可能是指: