首页 >
伪黎曼流形
✍ dations ◷ 2025-06-07 21:23:49 #伪黎曼流形
在微分几何中,伪黎曼流形(英语:Pseudo-Riemannian manifold),也称为半黎曼流形,是一光滑流形,其上有一光滑、对称、点点非退化的
(
0
,
2
)
{displaystyle (0,2)}
张量。此张量称为伪黎曼度量或伪度量张量。伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每个正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。每一个非退化对称,双线性形式有一个固定的度量符号
(
p
,
q
)
{displaystyle (p,q)}
。这里
p
{displaystyle p}
与
q
{displaystyle q}
记作正特征值及负特征值的个数。注意
p
+
q
=
n
{displaystyle p+q=n}
是流形的维数。黎曼流形就是以
(
n
,
0
)
{displaystyle (n,0)}
作为符号。伪黎曼流形的符号
(
p
,
1
)
{displaystyle (p,1)}
称为洛伦兹度量。拥有洛伦兹度量的流形都是洛伦兹流形。除黎曼流形外,洛伦兹流形是伪黎曼流形的最重要的子类。因为它常被用于广义相对论。广义相对论首要假设是时空可以转为拥有
(
3
,
1
)
{displaystyle (3,1)}
符号的洛伦兹流形的模型。和欧几里得空间
R
n
{displaystyle mathbf {R} ^{n}}
可以被认为是黎曼流形的模型一样,,有平坦闵可夫斯基度量的闵可夫斯基空间(Minkowski space)
R
p
,
1
{displaystyle mathbf {R} ^{p,1}}
是洛伦兹流形的模型空间。特征数为
(
p
,
q
)
{displaystyle (p,q)}
的伪黎曼流形的模型空间是有如下伪度量的
R
p
,
q
{displaystyle mathbf {R} ^{p,q}}
:有些黎曼度量的基本定理可以推广到伪黎曼的情形。例如黎曼几何基本定理对伪黎曼流形也成立。这使得我们能够在伪黎曼流形上能够使用列维-奇维塔联络和相关的曲率张量。另一方面,黎曼几何的很多定理在推广到伪黎曼的情况下不成立。例如,并不是每个光滑流形都可以有一个给定符号的伪黎曼度量;因为有一些特殊的拓扑阻碍存在。
相关
- 钻石尘钻石尘(英语:Diamond dust)是一种能在地面附近观测到的微小冰块。亦作“钻石粉尘”或“钻石星尘”,有的称作“冰晶”。这些小冰块经常出现在逆温时期,热空气与冷空气混合的时候。
- Cn5f14 6d10 7s22, 8, 18, 32, 32, 18, 2第一:1154.9 kJ·mol−1 第二:2170.0 kJ·mol−1 第三:3164.7 kJ·mol−1 (六方密排主条目:[[鎶的同位素]]'鎶'(Copernicium)是一种人工合成
- 四肢肢,或称肢体,是指动物的手和脚。哺乳类动物拥有四条肢体,故又称为四肢。另一方面,手臂和腿也分别可称为上肢和下肢。昆虫的肢体则多很多,如毛虫、蜈蚣有很多附肢。
- 队列研究世代研究(英语:cohort study 或 panel study),又译为队列研究、群组研究、定群研究、追踪研究、梯次研究等,是在医学、社会科学、精算学、生态学等领域中使用的一种纵向研究(英语:l
- 排气消化系统(消化道)气体或胃肠气、胃肠气胀,俗称屁(flatulence),亦称矢气,指动物消化道肛门排出的气体。有研究指出,牛羊等反刍动物放屁所产生的甲烷可能导致全球暖化。屁的主要气体来
- 列克星敦和康科德战役列克星敦和康科德战役(英语:Battles of Lexington and Concord)是英国陆军与北美民兵之间的一场武装冲突,发生于1775年4月19日。虽然美国参议院在1908年通过决议,将邓莫尔伯爵的
- cancerCancer可以指:
- 神经病变周边神经病变(英语:Peripheral neuropathy,缩写PN)俗称神经系统疾病,是指神经系统的疾病或异常状态下的神经系统 。虽然在大众文化中神经病常常是一种代替精神病的说法,但神经病实
- 詹姆斯·麦迪逊詹姆士·麦迪逊(英语:James Madison Jr.,1751年3月16日-1836年6月28日),是位美国政治家、开国元勋、第四任总统 (1809年-1817年)。因在起草和力荐《美国宪法》和《权利法案》中的关键
- ʃ清颚龈擦音或清拱龈后擦音(voiceless palato-alveolar fricative 或 voiceless domed postalveolar fricative)为辅音之一,属齿龈后音,用于一些语言当中。国际音标以⟨ʃ⟩代表