伪黎曼流形

✍ dations ◷ 2025-11-29 08:17:00 #伪黎曼流形
在微分几何中,伪黎曼流形(英语:Pseudo-Riemannian manifold),也称为半黎曼流形,是一光滑流形,其上有一光滑、对称、点点非退化的 ( 0 , 2 ) {displaystyle (0,2)} 张量。此张量称为伪黎曼度量或伪度量张量。伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每个正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。每一个非退化对称,双线性形式有一个固定的度量符号 ( p , q ) {displaystyle (p,q)} 。这里 p {displaystyle p} 与 q {displaystyle q} 记作正特征值及负特征值的个数。注意 p + q = n {displaystyle p+q=n} 是流形的维数。黎曼流形就是以 ( n , 0 ) {displaystyle (n,0)} 作为符号。伪黎曼流形的符号 ( p , 1 ) {displaystyle (p,1)} 称为洛伦兹度量。拥有洛伦兹度量的流形都是洛伦兹流形。除黎曼流形外,洛伦兹流形是伪黎曼流形的最重要的子类。因为它常被用于广义相对论。广义相对论首要假设是时空可以转为拥有 ( 3 , 1 ) {displaystyle (3,1)} 符号的洛伦兹流形的模型。和欧几里得空间 R n {displaystyle mathbf {R} ^{n}} 可以被认为是黎曼流形的模型一样,,有平坦闵可夫斯基度量的闵可夫斯基空间(Minkowski space) R p , 1 {displaystyle mathbf {R} ^{p,1}} 是洛伦兹流形的模型空间。特征数为 ( p , q ) {displaystyle (p,q)} 的伪黎曼流形的模型空间是有如下伪度量的 R p , q {displaystyle mathbf {R} ^{p,q}} :有些黎曼度量的基本定理可以推广到伪黎曼的情形。例如黎曼几何基本定理对伪黎曼流形也成立。这使得我们能够在伪黎曼流形上能够使用列维-奇维塔联络和相关的曲率张量。另一方面,黎曼几何的很多定理在推广到伪黎曼的情况下不成立。例如,并不是每个光滑流形都可以有一个给定符号的伪黎曼度量;因为有一些特殊的拓扑阻碍存在。

相关

  • 核电站核电站即核能发电厂,或称核电站。是一种以核反应为热力源的热电厂,和其他的热电厂一样,以热能驱动蒸汽涡轮发动机并连接至发电机发电。根据国际原子能机构的报告,截至2014年4月2
  • 子宫内膜子宫内膜(endometrium)是哺乳动物子宫内侧的上皮组织层以及其黏膜层。子宫内膜可分为基底层(basal layer)及机能层(functional layer),其机能层会在月经周期或是动情周期增厚,若没有
  • 中央神经系统中枢神经系统(英文:central nervous system,缩写:CNS)是神经系统中神经细胞集中的结构,在脊椎动物包括脑和脊髓;在高等无脊椎动物如环节动物和昆虫等,则主要包括腹神经索和一系列的
  • 两栖动物分类表参见爬行动物分类表
  • 理查德·哈密尔顿理查德·威廉·哈密尔顿,CH(英语:Richard William Hamilton,1922年2月24日-2011年9月13日),英国画家及拼贴艺术家,有英国“波普艺术之父”之称,其1956年作品《是什么让今日的住家如此
  • Histology at KUMC堪萨斯大学(英语:University of Kansas)是一所美国堪萨斯州的公立研究型大学。主校区位于堪萨斯州劳伦斯,另外还有堪萨斯城和欧弗兰帕克两处校区。堪萨斯大学由劳伦斯市民在1865
  • 几何级数等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个
  • 拉姆安拉拉姆安拉(阿拉伯语:رام الله‎),又译拉马拉,是巴勒斯坦的一个重要城市,位于约旦河西岸拉姆安拉和比雷赫省,在东耶路撒冷以北约10公里。人口274,600(2007年)。拉姆安拉是巴勒斯
  • 高雄加工出口区加工出口区高雄园区(旧名高雄加工出口区),为台湾南部由经济部加工出口区管理处高雄分处管理的加工出口区,位于高雄市前镇区西北部,凸出于高雄港区因濬港工程所填成之中岛半岛上。
  • 勒索软件勒索软件,又称勒索病毒,是一种特殊的恶意软件,又被人归类为“阻断访问式攻击”(denial-of-access attack),其与其他病毒最大的不同在于手法以及中毒方式。其中一种勒索软件仅是单