立方体

✍ dations ◷ 2025-10-29 14:41:42 #立方体
在几何学中,立方体(Cube),是由6个正方形面组成的正多面体,故又称正六面体(Regular Hexahedron)、正方体或正立方体。它有12条棱(边)和8个顶(点),是五个柏拉图立体之一。立方体是一种特殊的正四棱柱、长方体、三方偏方面体、菱形多面体、平行六面体,就如同正方形是特殊的矩形、菱形、平行四边形一様。立方体具有正八面体对称性(英语:Octahedral symmetry),即考克斯特BC3对称性,施莱夫利符号{4,3},考克斯特-迪肯符号(英语:Coxeter-Dynkin digram),其对偶多面体为正八面体。面的组成:正方形 面的数目:6 边的数目:12 顶点数目:8 表面积: 6 a 2   {displaystyle 6a^{2} } 体积: a 3   {displaystyle a^{3} } 二面角角度: 90 ∘ {displaystyle 90^{circ }} 外接球半径: 3 4 a {displaystyle {sqrt {frac {3}{4}}}a} ≈ 0.866 a {displaystyle approx 0.866a} 内接球半径: a 2 {displaystyle {frac {a}{2}}} 对偶多面体:正八面体 在所有表面积一定的长方体中,立方体的体积最大,同样,在所有线性大小(长宽高之和)一定的长方体中,立方体的体积也是最大的。反过来,体积相等的长方体中,立方体拥有最小表面积和线性大小。在三维直角坐标系中,对于以原点为中心的、各棱平行于坐标轴的、棱长为2的立方体,其顶点坐标为 (±1, ±1, ±1) 的全排列。其包含了所有满足|x|≤1且|y|≤1且|z|≤1的点(x,y,z)。 在R3中,以点(x0,y0,z0)为中心的立方体表面是点(x,y,z)的运动轨迹,其中x,y,z满足:立方体有11种不同的展开图,即是说,我们可以有11种不同的方法切开空心立方体的7条棱而将其展平为平面图形,见右图。如果我们要将立方体涂色而使相邻的面不带有相同的颜色,则我们至少需要3种颜色(类似于四色问题)。 立方体是唯一能够独立密铺三维欧几里得空间的柏拉图正多面体,因此立方体堆砌也是四维唯一的正堆砌(三维空间中的堆砌拓扑上等价于四维多胞体)。它又是柏拉图立体中唯一一个有偶数边面——正方形面的,因此,它是柏拉图立体中独一无二的环带多面体(它所有相对的面关于立方体中心中心对称)。 将立方体沿对角线切开,能得到6个全等的正4棱柱(但它不是半正的,底面棱长与侧棱长之比为2:√3)将其正方形面贴到原来的立方体上,能得到菱形十二面体(Rhombic Dodecahedron)(两两共面三角形合成一个菱形)。我们可以从不同角度将立方体投影到二维平面上,这些投影都各自携带有立方体原本BC3对称性的一部分。作为正多面体之一,立方体拥有较高的对称性,它的所有面在几何上都是相同的,不可区分的。可是我们也可以想象将立方体的面“涂上”不同的“颜色”,使它其的不同面拥有不同的“几何意义”,使立方体拥有不同的对称性。在立方体完全的对称性,即正八面体对称性Oh中,立方体的所有面都是相同的。二面体对称性D4h则将立方体描述得像一个正四棱柱,有两个颜色相同的上下底面,其余4个侧面颜色相同。立方体最低的对称性D2h也将立方体描述的像一个棱柱,不过是长方形棱柱,即一个长方体,它的相对的面颜色相同,而相邻的面是不同的。每一种半正对称性都有自己的施莱夫利符号、考克斯特-迪肯符号(英语:Coxeter-Dynkin digram)和Wythoff符号(英语:Wythoff symbol)。此外,由于其对偶正八面体也可被看作是正三反棱柱,立方体也可被看作是正三反棱柱的对偶,即正三偏方面体。当正八面体在立方体之内: 正八面体体积 : 立方体体积 =×2 : 边3 =(1/3)(n/2)2 : n3 =1 : 6将立方体对映映射(英语:Antipodal point)后的到的商形成的一个实射影多面体,即立方体半形(hemicube)(不应叫其“半立方体”,因为其易与‘demicube’混淆)。正方体的对偶多面体是正八面体,如果原正方体棱长为1,则对偶正八面体棱长为√2。 正方体是一种最特殊的四边形正六面体:立方体的8个顶点可以被交错地分为两组,每一组都构成一个完整的正四面体,更严格地说,这是作为半(Demi-)立方体(demicube)的正四面体。这两个正四面体组合到一起,就构成了一个正的复合多面体——星形正八面体(Stella Octagula)。两个正四面体重合的地方构成凸的正八面体。这意味着,正四面体的对称群A3是正方体对称群的子群,对应着能将半立方体变换到自身的对称变换,立方体其余的对称变换能将两个半立方体变换到对方。一个这样的正四面体占据了立方体体积的1/3,立方体剩余的部分是4个全等的、顶角是立方体立体角的正三棱锥,各占立方体体积的1/6。 从立方体各棱中点处切掉立方体的角,我们会发现原先立方体的正方形面变成了其对偶的正方形面,而切掉的顶点处出现了新的正三角形面,这样的操作叫“截半”(Rectification),得到的半正多面体叫截半立方体(Rectified Cube),又叫立方八面体(Cuboctahedron)。如果我们不在棱中点处截它,则这种操作叫“截角”(Truncation),正方形面变成了八边形。如果截的合适,则我们可将正方形截成正八边形,得到的半正多面体叫截顶立方体(Truncated Cube)。如果我们同时截掉立方体的棱和顶,则这种操作叫“截棱”(Centellation),如果截的恰当,得到的半正多面体是小斜方截半立方体(Rhombicuboctahedron)。正十二面体有20个顶点,它们可以以不同组合分成由8个顶点组成的5组,这8个顶点两两相连,构成内接在正十二面体内部的立方体,它的棱都是正十二面体的各面的对角线。这五个立方体组合在一起,构成复合多面体——五复合立方体。如果我们完全切掉立方体相对的两个顶点,我们会得到一个非正的八面体,将8个这样的八面体正三角形面对正三角形面贴到正八面体上,则我们得到截半立方体。 立方体与所有其它拥有BC3对称性的多面体(如正八面体和立方八面体)构成正八面体家族:此外,立方体在拓扑上与其它3阶正镶嵌{n,3}相关:立方体在拓扑上还和其它阶的正方形正镶嵌{4,n}(n≥3)有关:立方体是正四棱柱:参见尺规作图,已经证明此题无法用无刻度的直尺与圆规去画出 2 3 {displaystyle {sqrt{2}}} 的位置立方体的横切面只有四种:其中以正六边形的面积最大,若立方体的棱长为a,则正六边形的面积为 3 3 a 2 4 {displaystyle {frac {3{sqrt {3}}a^{2}}{4}}} 。三角柱 · 四角柱 · 五角柱 · 六角柱 · 七角柱 · 八角柱 · 九角柱 · ... · 无限角柱(双曲)三角反柱 · 四角反柱 · 五角反柱 · 六角反柱 · 七角反柱 · 八角反柱 · ... · 无限角反柱三角锥柱 · 四角锥柱 · 五角锥柱 · 六角锥柱 · 七角锥柱 · 八角锥柱 · ... · 无限角锥柱

相关

  • 军事随着希腊黑暗时代的结束,人口显著增加的同时也恢复了都市文化,以及古希腊城邦的兴起。这些发展迎来了古代时期(公元前800-前480年)。就在这个时候,希腊人也开始组织城邦之间的战争
  • 对立四边形对立四边形(又译逻辑方阵、四角对当)是来自亚里士多德逻辑或词项逻辑的术语,它明确说明了各种句子类型之间的逻辑关系。对于主词"S"和谓词"P",提供了如下规则:只有前两个规则是
  • 坦普尔大学天普大学(Temple University,或译为坦普尔大学,有时也被称作庙大),位于美国东岸宾夕法尼亚州费城的一所州关联性的综合性研究型大学,然而天普大学虽受宾州政府州款补助,但其校保有
  • 肥皂,又名香皂、雪文(台湾话)、茶箍(台湾话)(但根据中华民国教育部的台湾闽南语常用辞典中指出,茶箍是用压榨茶油时所剩下来的渣滓,再把它压制成坚硬的饼形,可当肥皂用,但与肥皂其实不
  • 农业税农业税指向农业收入单位(组织)和个人征收的一种税种,作为税赋种类和术语,源自《农业税条例》颁布实施以后。中国大陆的农业税以折合征收粮食实物为主,依据为《农业税条例》;由于一
  • 纽芬兰-拉布拉多省纽芬兰与拉布拉多省(英语:Newfoundland and Labrador,法语:Terre-Neuve-et-Labrador,旧称“纽芬兰省”),简称纽省,是加拿大的十个省之一。纽芬兰与拉布拉多省由两部分组成:位于北美大
  • 汉桓帝汉桓帝刘志(132年-168年1月25日),东汉第十一位皇帝(146年8月1日-168年1月25日在位),其正式谥号为“孝桓皇帝”,后世省略“孝”字称“汉桓帝”,他是汉章帝曾孙,河间孝王刘开之孙,蠡吾侯
  • 因斯布鲁克因斯布鲁克(德语:Innsbruck)位于奥地利西部群山之间的因河畔,是蒂罗尔州的首府。穿越阿尔卑斯山通往意大利南蒂罗尔地区的布伦纳山口从这里开始。因斯布鲁克的名字来自于因河和
  • 陈维崧陈维崧(1626年1月7日-1682年6月13日),字其年,号迦陵,江苏宜兴人。明末清初词坛第一人,“阳羡词派”领袖。明熹宗天启五年,十二月初六出生,是明末四公子之一陈贞慧之子,以其髯长,时称陈
  • 攻占釜山釜山镇 – 多大浦 – 东莱城 – 尚州 – 忠州弹琴台 – 玉浦 – 泗川 – 临津江 – 唐浦 – 唐项浦 – 闲山岛 – 龙仁 – 梨峙 – 平壤 – 釜山浦 – 北关