向量丛

✍ dations ◷ 2025-09-16 08:59:03 #微分几何,代数拓扑,复分析,向量丛,向量

向量丛(vector bundle)也翻译成向量束,是数学,特别是几何学,上的一种几何结构,在空间 ( 可以是拓扑空间、流形或代数簇)的每一点指定(或"黏上")一个向量空间(比如 R n {\displaystyle \mathbb {R} ^{n}} 之上的向量丛最简单的例子是,× R n {\displaystyle \mathbb {R} ^{n}} 中的每一点有一个开邻域 U X {\displaystyle U\subseteq X} ,和一个同胚

使得对所有 ∈ ,:

开邻域和同胚φ合起来叫做丛的局部平凡化。这表示映射π在局部看起来"像" × R到 上的投影.

向量丛 × R 称为平凡,如果赋予这空间一个投影映射  × R → ,也就是 = × R 整体上是 的乘积空间 。

每个纤维π−1()是一个有限维实向量空间,所以有在点 有一个维数,由局部平凡化的性质可知函数  x d x {\displaystyle \textstyle x\mapsto d_{x}}  的每个连通的部分上为常数。如果它在上是常数的话,我们把这个维数叫做向量丛的。一阶向量丛也叫线丛。

一个从向量丛π1 : 11到向量丛π2 : 22的态射(morphism)是一对连续映射 : 12和 : 12使得

所有向量丛的类和丛的射组成了一个范畴。限制到光滑流形和光滑丛射,我们就有了光滑向量丛的范畴。

我们可以考虑有一个固定基空间的所有向量丛组成的范畴。我们取那些在基空间上为恒等映射(identity map)的射作为在这个范畴中的射.也就是说,丛射满足下面的交换图:

(注意这个范畴不是可交换的;向量丛的射的核通常不能很自然的成为一个向量丛。)

给定一个向量丛 π : → , 和 的开子集 ,我们可以考虑这个向量丛 在 上的截面,也就是连续函数  : → 满足 (π∘)=id。本质上,截面在 的每一点指定一个向量,且这向量属于在该点的,即 () ∈ π−1() ,并且要求这种指定要有连续性(或可微性,依讨论空间而有所不同)。

例如,微分流形的切丛的截面就是流形上的向量场("微分"流形上一般会要求向量场可微)。

令 () 为上所有截面的集合. ()中至少有个元素 ,称作零截面(zero section),这个截面函数 会把 的每一点 都映射到向量空间π−1()中的零向量。使用每点的加法和数乘,()本身也构成了向量空间。这些向量空间的总和就是 上的向量空间的层(shelf)。

若 属于() 而 α : → R是 上的连续函数,则α 依然属于集合 ()。我们可以看到 () 是一个 上的连续实值函数的环上的模,进一步讲,若O表示上连续函数的层结构,则是O-模的一个层.

不是O-模的每个层都是以这种方式从向量丛的导的:只有局部自由层可以从这种方法得到。(理由:局部的,我们要找一个投影 × R → 的一个截面,这些恰好是连续函数 → R,并且这一函数是连续函数 → R-元组.)

更进一步讲:上的实向量丛的范畴是等价于O-模的局部自由和有限生成的层的。

所以我们可以将向量丛视为位于O-模的层的范畴内;而后者是可交换的,所以我们可以计算向量丛的射的核。

两个上的在同一个域上的向量丛,有一个惠特尼和,在每点的纤维为那两个丛的纤维的直积。同样,向量积和对偶空间丛也可以这样引入。

向量丛是纤维丛的特例。

光滑向量丛定义为满足和是光滑流形,π : → 是光滑映射,而局部平凡化映射φ是微分同胚的向量丛。

把实向量空间换成复向量空间(complex vector space, 既标量为复数的向量空间),就得到了复向量丛(complex vector bundle)。这是结构群的约化的特例。也可以用其他拓扑域上的向量空间,但相对比较少见。

除了有限维的向量空间以外,如果是某个巴拿赫空间(而不仅是R),就可以得到巴拿赫丛.

相关

  • 禽类鸟是鸟纲(学名:Aves)动物的通称,是唯一存活至今的恐龙,现代所有鸟类在生物学上也被分类为鸟形恐龙(即鸟翼类)的一部分;鸟纲的全体成员均为两足、恒温、卵生、身披羽毛且色彩鲜艳各异
  • 理论物理理论物理学(英语:Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。:9丰富的想像力、精湛
  • 埃科尔斯县埃科尔斯县(Echols County, Georgia)是美国乔治亚州南部的一个县,南邻佛罗里达州。面积1,093平方公里。根据美国2000年人口普查,共有人口3,754人。县治斯塔滕维尔 (Statenville)。
  • 柏林会议柏林西非会议(英语:Berlin Conference,意指柏林会议;德语:Kongokonferenz,意指刚果会议)由欧洲强国在1884年至1885年与德国柏林举行,以准备他们在非洲建立殖民地与发展贸易。与会国
  • 机会平等机会平等,指社会上每个人获得发展之机会并不因其种族、出身、贫富、性别、性倾向等因素而有所差异。平等机会与法律之前人人平等之概念有关。平等机会并不确保、亦不要求有结
  • 蜜蜡蜂蜡(英语:Beeswax),是蜜蜂工蜂分泌的蜡。蜜蜂用蜂蜡在蜂巢里建分隔的房间,用来育幼或储存花粉。工蜂拥有四对蜡腺,位于腹部第4至7节。蜂蜡即蜡腺的分泌物。刚羽化成的最年轻的工
  • 风油精风油精是一种中成药,通常为淡绿色油状液体。根据中国国家药监局发布的标准,风油精的主要成分为薄荷脑、水杨酸甲酯、樟脑、桉油、丁香酚,加入液状石蜡、叶绿素、香精等混合提取
  • 原台南神社事务所原台南神社事务所位于台南市中西区,于2004年3月7日公告为市定古迹,在经过整修后做为忠义国小的图书馆使用。该建筑虽然名为神社事务所,但实际上可能为台南神社外苑的休憩所。该
  • 罗伯特·理查德森罗伯特·布里吉·理查德森(Robert Bridge Richardson,1955年8月27日-)是一名美国电影摄影指导。他曾获得过三次奥斯卡最佳摄影奖,分别为1991年的《刺杀肯尼迪》,2004年的《飞行者
  • 杜昌业杜昌业,南唐大臣。无锡人。 杜昌业是兵部尚书主管尚书省事,出江州任江州观察使,943年,李璟即位为皇帝,任用陈觉、冯延己、冯延鲁、魏岑、查文徽,他们把持败坏政事,南唐人把他们