贝氏定理

✍ dations ◷ 2024-12-22 18:51:45 #贝氏定理
贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,描述在已知一些条件下,某事件的发生概率。比如,如果已知某癌症与寿命有关,使用贝叶斯定理则可以通过得知某人年龄,来更加准确地计算出他罹患癌症的概率。通常,事件A在事件B已发生的条件下发生的概率,与事件B在事件A已发生的条件下发生的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途,即通过已知的三个概率而推出第四个概率。贝叶斯定理跟随机变量的条件概率以及边缘概率分布有关。作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的。这一定理的主要应用为贝叶斯推断,是推论统计学中的一种推断法。这一定理名称来自于托马斯·贝叶斯。贝叶斯定理是关于随机事件A和B的条件概率的一则定理。P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) {displaystyle P(Amid B)={frac {P(Bmid A)P(A)}{P(B)}}}其中 A {displaystyle A} 以及 B {displaystyle B} 为随机事件,且 P ( B ) {displaystyle P(B)} 不为零。 P ( A | B ) {displaystyle P(A|B)} 是指在事件 B {displaystyle B} 发生的情况下事件 A {displaystyle A} 发生的概率。在贝叶斯定理中,每个名词都有约定俗成的名称:按这些术语,贝叶斯定理可表述为:也就是说,后验概率与先验概率和相似度的乘积成正比。另外,比例 P ( B | A ) / P ( B ) {displaystyle P(B|A)/P(B)} 也有时被称作标准似然度(standardised likelihood),贝叶斯定理可表述为:根据条件概率的定义。在事件B发生的条件下事件A发生的概率是:其中 A与B的联合概率表示为 P ( A ∩ B ) {displaystyle P(Acap B)} 或者 P ( A , B ) {displaystyle P(A,B)} 或者 P ( A B ) {displaystyle P(AB)} 。同样地,在事件A发生的条件下事件B发生的概率整理与合并这两个方程式,我们可以得到这个引理有时称作概率乘法规则。上式两边同除以P(B),若P(B)是非零的,我们可以得到贝叶斯定理:贝叶斯定理通常可以再写成下面的形式:其中AC是A的补集(即非A)。故上式亦可写成:在更一般化的情况,假设{Ai}是事件集合里的部分集合,对于任意的Ai,贝叶斯定理可用下式表示:贝叶斯定理亦可由相似率Λ和可能性O表示:其中定义为B发生时,A发生的可能性(odds);则是A发生的可能性。相似率(Likelihood ratio)则定义为:贝叶斯定理亦可用于连续几率分布。由于概率密度函数严格上并非几率,由几率密度函数导出贝叶斯定理观念上较为困难(详细推导参阅)。贝叶斯定理与几率密度的关系是由求极限的方式建立:全几率定理则有类似的论述:如同离散的情况,公式中的每项均有名称。 f(x, y)是X和Y的联合分布; f(x|y)是给定Y=y后,X的后验分布; f(y|x)= L(x|y)是Y=y后,X的相似度函数(为x的函数); f(x)和f(y)则是X和Y的边际分布; f(x)则是X的先验分布。 为了方便起见,这里的f在这些专有名词中代表不同的函数(可以由引数的不同判断之)。对于变数有二个以上的情况,贝叶斯定理亦成立。例如:这个式子可以由套用多次二个变数的贝式定理及条件几率的定义导出:一般化的方法则是利用联合几率去分解待求的条件几率,并对不加以探讨的变数积分(意即对欲探讨的变数计算边缘几率)。取决于不同的分解形式,可以证明某些积分必为1,因此分解形式可被简化。利用这个性质,贝叶斯定理的计算量可能可以大幅下降。贝氏网络为此方法的一个例子,贝氏网络指定数个变数的联合几率分布的分解型式,该几率分布满足下述条件:当其他变数的条件几率给定时,该变数的条件几率为一简单型式。下面展示贝叶斯定理在检测吸毒者时的应用。假设一个常规的检测结果的灵敏度和特异度均为99%,即吸毒者每次检测呈阳性(+)的概率为99%。而不吸毒者每次检测呈阴性(-)的概率为99%。从检测结果的概率来看,检测结果是比较准确的,但是贝叶斯定理却可以揭示一个潜在的问题。假设某公司对全体雇员进行吸毒检测,已知0.5%的雇员吸毒。请问每位检测结果呈阳性的雇员吸毒的概率有多高?令“D”为雇员吸毒事件,“N”为雇员不吸毒事件,“+”为检测呈阳性事件。可得根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):尽管吸毒检测的准确率高达99%,但贝叶斯定理告诉我们:如果某人检测呈阳性,其吸毒的概率只有大约33%,不吸毒的可能性比较大。假阳性高,则检测的结果不可靠。这是因为该公司不吸毒的人数远远大于吸毒人数,所以即使不吸毒者被误检为阳性的概率仅为1%,其实际被误检人数还是很庞大。举例来说,若该公司总共有1000人(其中5人吸毒,995人不吸),不吸毒的人被检测出阳性的人数有大约10人(1% x 995),而吸毒被验出阳性的人数有5人(99% x 5),总共15人被验出阳性(10 + 5)。在这15人里面,只有约33%的人是真正有吸毒。所以贝叶斯定理可以揭露出此检测在这个案例中的不可靠。同时,也因为不可靠的主因是不吸毒却被误检阳性的人数远多于吸毒被检测出来的人数(上述例子中10人 > 5 人),所以即使阳性检测灵敏度能到100%(即只要吸毒一定验出阳性),检测结果阳性的员工,真正吸毒的概率 P ( D | + ) {displaystyle P(D|+)} 也只会提高到约33.4%。但如果灵敏度仍然是99%,而特异度却提高到99.5%(即不吸毒的人中,约0.5%会被误检为阳性),则检测结果阳性的员工,真正吸毒的概率可以提高到49.9%。基于贝叶斯定理:即使100%的胰腺癌症患者都有某症状,而某人有同样的症状,绝对不代表该人有100%的概率得胰腺癌,还需要考虑先验概率,假设胰腺癌的发病率是十万分之一,而全球有同样症状的人有万分之一,则此人得胰腺癌的概率只有十分之一,90%的可能是是假阳性。基于贝叶斯定理:假设100%的不良种子都表现A性状,而种子表现A性状,并不代表此种子100%是不良种子,还需要考虑先验概率,假设一共有6万颗不良种子,在种子中的比例是十万分之一(假设总共有60亿颗种子),假设所有种子中有1/3表现A性状(即20亿颗种子表现A性状),则此种子为不良种子的概率只有十万分之三。

相关

  • 流感嗜血杆菌流感嗜血杆菌(学名:Haemophilus influenzae),简称嗜血杆菌,前称费佛氏杆菌(或译拜菲尔氏菌)或流感杆菌,是一种没有运动力的革兰氏阴性杆菌。它是于1892年由费佛(英语:Richard Friedric
  • 革兰氏阴性杆菌革兰氏阴性菌(英语:Gram-negative bacteria)泛指革兰氏染色反应呈红色的细菌。在革兰氏染色实验中,首先添加了结晶紫,再添入另一种复染染料(通常使用番红),从而将所有的革兰氏阴性菌
  • 旅游医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学旅游医学,是一门关于预防和治理旅游相
  • 生物量生物量(Biomass)是指一条食物链可支持的生物总质量,一个动物或植物物种的活个体的总量或重量,称为物种生物量,而群落中所有物种活个体的总量或重量,称为群落生物量。生物量通常以
  • 氮循环氮循环(英语:Nitrogen cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。空气中含有大约78%的氮气,占有绝大部分的氮元素。氮是许多生物过程的
  • 子宫颈癌子宫颈癌又称宫颈癌(英语:Cervical cancer),为发生在子宫颈的癌症 ,源自于不正常细胞的生长,甚至能侵袭或转移至身体其他部位。早期通常并不会有症状,而晚期时可能有不正常的阴道出
  • 良性阵发性位置性眩晕良性阵发性姿势性眩晕(Benign paroxysmal positional vertigo,简称BPPV)为一种内耳诱发的疾病,患者会有重复性短暂眩晕的症状,头部移动时会感到天旋地转,甚至连就寝翻身时都会有晕
  • 宫颈癌子宫颈癌又称宫颈癌(英语:Cervical cancer),为发生在子宫颈的癌症 ,源自于不正常细胞的生长,甚至能侵袭或转移至身体其他部位。早期通常并不会有症状,而晚期时可能有不正常的阴道出
  • 盗汗汗液,或汗,是由人等高等动物透过汗腺所分泌出的液体。汗的分泌受到植物性神经系统调节。汗液的主要成分是水,约占总成分的98%到99%,其余物质为氯化钠,极少量的尿素、氨和其他盐类
  • 阿莫西林克拉维酸钾阿莫西林克拉维酸钾是一种用来治疗各种细菌感染的抗细菌药,由阿莫西林和克拉维酸钾合成。分为口服的阿莫西林克拉维酸钾片和静脉注射的干混悬剂。阿莫西林克拉维酸钾是世界卫