贝氏定理

✍ dations ◷ 2025-06-06 23:01:28 #贝氏定理
贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,描述在已知一些条件下,某事件的发生概率。比如,如果已知某癌症与寿命有关,使用贝叶斯定理则可以通过得知某人年龄,来更加准确地计算出他罹患癌症的概率。通常,事件A在事件B已发生的条件下发生的概率,与事件B在事件A已发生的条件下发生的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途,即通过已知的三个概率而推出第四个概率。贝叶斯定理跟随机变量的条件概率以及边缘概率分布有关。作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的。这一定理的主要应用为贝叶斯推断,是推论统计学中的一种推断法。这一定理名称来自于托马斯·贝叶斯。贝叶斯定理是关于随机事件A和B的条件概率的一则定理。P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) {displaystyle P(Amid B)={frac {P(Bmid A)P(A)}{P(B)}}}其中 A {displaystyle A} 以及 B {displaystyle B} 为随机事件,且 P ( B ) {displaystyle P(B)} 不为零。 P ( A | B ) {displaystyle P(A|B)} 是指在事件 B {displaystyle B} 发生的情况下事件 A {displaystyle A} 发生的概率。在贝叶斯定理中,每个名词都有约定俗成的名称:按这些术语,贝叶斯定理可表述为:也就是说,后验概率与先验概率和相似度的乘积成正比。另外,比例 P ( B | A ) / P ( B ) {displaystyle P(B|A)/P(B)} 也有时被称作标准似然度(standardised likelihood),贝叶斯定理可表述为:根据条件概率的定义。在事件B发生的条件下事件A发生的概率是:其中 A与B的联合概率表示为 P ( A ∩ B ) {displaystyle P(Acap B)} 或者 P ( A , B ) {displaystyle P(A,B)} 或者 P ( A B ) {displaystyle P(AB)} 。同样地,在事件A发生的条件下事件B发生的概率整理与合并这两个方程式,我们可以得到这个引理有时称作概率乘法规则。上式两边同除以P(B),若P(B)是非零的,我们可以得到贝叶斯定理:贝叶斯定理通常可以再写成下面的形式:其中AC是A的补集(即非A)。故上式亦可写成:在更一般化的情况,假设{Ai}是事件集合里的部分集合,对于任意的Ai,贝叶斯定理可用下式表示:贝叶斯定理亦可由相似率Λ和可能性O表示:其中定义为B发生时,A发生的可能性(odds);则是A发生的可能性。相似率(Likelihood ratio)则定义为:贝叶斯定理亦可用于连续几率分布。由于概率密度函数严格上并非几率,由几率密度函数导出贝叶斯定理观念上较为困难(详细推导参阅)。贝叶斯定理与几率密度的关系是由求极限的方式建立:全几率定理则有类似的论述:如同离散的情况,公式中的每项均有名称。 f(x, y)是X和Y的联合分布; f(x|y)是给定Y=y后,X的后验分布; f(y|x)= L(x|y)是Y=y后,X的相似度函数(为x的函数); f(x)和f(y)则是X和Y的边际分布; f(x)则是X的先验分布。 为了方便起见,这里的f在这些专有名词中代表不同的函数(可以由引数的不同判断之)。对于变数有二个以上的情况,贝叶斯定理亦成立。例如:这个式子可以由套用多次二个变数的贝式定理及条件几率的定义导出:一般化的方法则是利用联合几率去分解待求的条件几率,并对不加以探讨的变数积分(意即对欲探讨的变数计算边缘几率)。取决于不同的分解形式,可以证明某些积分必为1,因此分解形式可被简化。利用这个性质,贝叶斯定理的计算量可能可以大幅下降。贝氏网络为此方法的一个例子,贝氏网络指定数个变数的联合几率分布的分解型式,该几率分布满足下述条件:当其他变数的条件几率给定时,该变数的条件几率为一简单型式。下面展示贝叶斯定理在检测吸毒者时的应用。假设一个常规的检测结果的灵敏度和特异度均为99%,即吸毒者每次检测呈阳性(+)的概率为99%。而不吸毒者每次检测呈阴性(-)的概率为99%。从检测结果的概率来看,检测结果是比较准确的,但是贝叶斯定理却可以揭示一个潜在的问题。假设某公司对全体雇员进行吸毒检测,已知0.5%的雇员吸毒。请问每位检测结果呈阳性的雇员吸毒的概率有多高?令“D”为雇员吸毒事件,“N”为雇员不吸毒事件,“+”为检测呈阳性事件。可得根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):尽管吸毒检测的准确率高达99%,但贝叶斯定理告诉我们:如果某人检测呈阳性,其吸毒的概率只有大约33%,不吸毒的可能性比较大。假阳性高,则检测的结果不可靠。这是因为该公司不吸毒的人数远远大于吸毒人数,所以即使不吸毒者被误检为阳性的概率仅为1%,其实际被误检人数还是很庞大。举例来说,若该公司总共有1000人(其中5人吸毒,995人不吸),不吸毒的人被检测出阳性的人数有大约10人(1% x 995),而吸毒被验出阳性的人数有5人(99% x 5),总共15人被验出阳性(10 + 5)。在这15人里面,只有约33%的人是真正有吸毒。所以贝叶斯定理可以揭露出此检测在这个案例中的不可靠。同时,也因为不可靠的主因是不吸毒却被误检阳性的人数远多于吸毒被检测出来的人数(上述例子中10人 > 5 人),所以即使阳性检测灵敏度能到100%(即只要吸毒一定验出阳性),检测结果阳性的员工,真正吸毒的概率 P ( D | + ) {displaystyle P(D|+)} 也只会提高到约33.4%。但如果灵敏度仍然是99%,而特异度却提高到99.5%(即不吸毒的人中,约0.5%会被误检为阳性),则检测结果阳性的员工,真正吸毒的概率可以提高到49.9%。基于贝叶斯定理:即使100%的胰腺癌症患者都有某症状,而某人有同样的症状,绝对不代表该人有100%的概率得胰腺癌,还需要考虑先验概率,假设胰腺癌的发病率是十万分之一,而全球有同样症状的人有万分之一,则此人得胰腺癌的概率只有十分之一,90%的可能是是假阳性。基于贝叶斯定理:假设100%的不良种子都表现A性状,而种子表现A性状,并不代表此种子100%是不良种子,还需要考虑先验概率,假设一共有6万颗不良种子,在种子中的比例是十万分之一(假设总共有60亿颗种子),假设所有种子中有1/3表现A性状(即20亿颗种子表现A性状),则此种子为不良种子的概率只有十万分之三。

相关

  • 粪小杆线虫粪小杆线虫(学名:Strongyloides stercoralis,俗名:threadworm(美)。又称粪线虫)是一种在人类身上的线虫(寄生虫),会导致粪线虫感染症(英语:Strongyloidiasis)。。粪小杆线虫可以寄宿
  • 婴儿婴儿是指刚出生的儿童,是人类一生的第一阶段。根据《说文解字》所述,婴儿的“婴”字本意为女性的颈部饰物,后引申解作为抱在胸前哺乳之初生儿。而婴儿的英文“infant”源于拉丁
  • 革兰氏阳性菌革兰氏阳性菌(英文:Gram Positive)是能够用革兰氏染色染成深蓝或紫色的细菌,而革兰氏阴性菌不能被染色(通常染作红色以对比)。它们细胞壁中含有较大量的肽聚糖,但经常缺乏革兰氏阴
  • α-变形菌纲α-变形菌(Alphaproteobacteria)是变形菌门(Proteobacteria)下的一个纲。此纲的成员变异性极大,且共通点极少,但他们确实系出同源。α-变形菌大多都是革兰氏阴性菌,而有些包内寄生
  • 淋巴液淋巴(英语:Lymph)也称胡豆液,是由组织液渗入毛细淋巴管后形成。淋巴是组织液回流的辅助渠道,参与维持机体的组织液平衡。淋巴是人体免疫系统的重要组成成分,当淋巴流经淋巴结的时
  • 在立体几何中,立体几何体的边界被称作面或表面,更严谨地说,面是立体几何体的一个平坦表面,而不平坦的面通常称为曲面,而所有表面的总和称为表面积。在高维度几何以及高维的多胞形
  • 心血管系统循环系统(英语:circulatory system),也称为心血管系统(英语:cardiovascular system)或血管系统(英语:vascular system)是负责血液循环,在细胞间传送养分(如氨基酸及电解质)、氧气、二氧化
  • 变量在初等数学里,变量或变元、元是一个用来表示值的符号,该值可以是随意的,也可能是未指定或未定的。在代数运算时,将变量当作明确的数值代入运算中,可以于单次运算时解出多个问题。
  • 吸入性吸入性肺炎是一种肺部感染,这是由于胃或口腔进入肺部的物质相对较多引起的。症状通常包括相对较快发作的发热和咳嗽。并发症可能包括肺脓肿。其中一些病例为化学性肺炎亚型,由
  • 人体冷冻技术人体冷冻技术(或人体冷藏学或人体冰冻法;英语:cryonics)是一种试验中的医学技术,把人体或动物在极低温(一般在摄氏零下196度以下 / 华氏零下320以下)的情况下深低温保存,并希望可以