偏最小二乘回归

✍ dations ◷ 2024-12-22 17:02:32 #偏最小二乘回归
偏最小二乘回归(英语:Partial least squares regression, PLS回归)是一种统计学方法,与主成分回归有关系,但不是寻找响应和独立变量之间最小方差的超平面,而是通过投影预测变量和观测变量到一个新空间来寻找一个线性回归模型。因为数据X和Y都会投影到新空间,PLS系列的方法都被称为双线性因子模型。当Y是分类数据时有“偏最小二乘判别分析(英语:Partial least squares Discriminant Analysis, PLS-DA)”,是PLS的一个变形。偏最小二乘用于查找两个矩阵(X和Y)的基本关系,即一个在这两个空间对协方差结构建模的隐变量方法。偏最小二乘模型将试图找到X空间的多维方向来解释Y空间方差最大的多维方向。偏最小二乘回归特别适合当预测矩阵比观测的有更多变量,以及X的值中有多重共线性的时候。相比之下,标准的回归在这些情况下不见效(除非它是吉洪诺夫正则化)。偏最小二乘算法被用在偏最小二乘路径建模中, 一个建立隐变量(原因不能没有实验和拟实验来确定,但一个典型的模型会基于之前理论假设(隐变量影响衡量指标的表现)的隐变量模型)这种技术是结构方程模型的一种形式,与经典方法不同的是基于组件而不是基于协方差。偏最小二乘来源于瑞典统计学家Herman Wold,然后由他的儿子Svante Wold发展。偏最小二乘的另一个词(根据Svante Wold)是投影到潜在结构,但偏最小二乘法依然在许多领域占据着主导地位。尽管最初的应用是在社会科学中,偏最小二乘回归今天被广泛用于化学计量学和相关领域。它也被用于生物信息学,sensometrics,神经科学和人类学。而相比之下,偏最小二乘回归最常用于社会科学、计量经济学、市场营销和战略管理。偏最小二乘的一般多元底层模型是其中 X {displaystyle X} 是一个 n × m {displaystyle ntimes m} 的预测矩阵, Y {displaystyle Y} 是一个 n × p {displaystyle ntimes p} 的响应矩阵; T {displaystyle T} 和 U {displaystyle U} 是 n × l {displaystyle ntimes l} 的矩阵,分别为 X {displaystyle X} 的投影(“X分数”、“组件”或“因子”矩阵)和 Y {displaystyle Y} 的投影(“Y分数”); P {displaystyle P} 和 Q {displaystyle Q} 分别是 m × l {displaystyle mtimes l} 和 p × l {displaystyle ptimes l} 的正交载荷矩阵,以及矩阵 E {displaystyle E} 和 F {displaystyle F} 是错误项,假设是独立同分布的随机正态变量。对 X {displaystyle X} 和 Y {displaystyle Y} 分解来最大化 T {displaystyle T} 和 U {displaystyle U} 之间的协方差。偏最小二乘的许多变量是为了估计因子和载荷矩阵 T , U , P {displaystyle T,U,P} 和 Q {displaystyle Q} 。它们中大多数构造了 X {displaystyle X} 和 Y {displaystyle Y} 之间线性回归的估计 Y = X B ~ + B ~ 0 {displaystyle Y=X{tilde {B}}+{tilde {B}}_{0}} 。一些偏最小二乘算法只适合 Y {displaystyle Y} 是一个列向量的情况,而其它的算法则处理了 Y {displaystyle Y} 是一个矩阵的一般情况。算法也根据他们是否估计因子矩阵 T {displaystyle T} 为一个正交矩阵而不同。 最后的预测在所有不同最小二乘算法中都是一样的,但组件是不同的。PLS1是一个 Y {displaystyle Y} 是向量时广泛使用的算法。它估计 T {displaystyle T} 是一个正交矩阵。以下是伪代码(大写字母是矩阵,带上标的小写字母是向量,带下标的小写字母和单独的小写字母都是标量):这种形式的算法不需要输入 X {displaystyle X} 和 Y {displaystyle Y} 定中心,因为算法隐式处理了。这个算法的特点是收缩于 X {displaystyle X} (减去 t k t ( k ) p ( k ) T {displaystyle t_{k}t^{(k)}{p^{(k)}}^{T}} ),但向量 y {displaystyle y} 不收缩,因为没有必要(可以证明收缩 y {displaystyle y} 和不收缩的结果是一样的)。用户提供的变量 l {displaystyle l} 是回归中隐藏因子数量的限制;如果它等于矩阵 X {displaystyle X} 的秩,算法将产生 B {displaystyle B} 和 B 0 {displaystyle B_{0}} 的最小二乘回归估计。2002年,一个叫做正交投影(英语:Orthogonal Projections to Latent Structures, OPLS)的方法提出。在OPLS中,连续变量数据被分为预测的和不相关的信息。这有利于改进诊断,以及更容易解释可视化。然而,这些变化只是改善模型的可解释性,不是生产力。 L-PLS通过3个连接数据块扩展了偏最小二乘回归。 同样,OPLS-DA(英语:Discriminant Analysis, 判别分析)可能被应用在处理离散变量,如分类和生物标志物的研究。大多数统计软件包都提供偏最小二乘回归。 R中的‘pls’包提供了一系列算法。

相关

  • 白三烯C4合酶2PNO, 2UUH, 2UUI, 3B29, 3HKK, 3LEO, 3PCV· leukotriene-C4 synthase activity · glutathione peroxidase activity · protein binding · enzyme activator activit
  • 肉桂酸肉桂酸(英语:Cinnamic acid,IUPAC名:(E)-3-苯基-2-丙烯酸),分子式为C6H5CHCHCOOH。是微溶于水的白色结晶化合物。归类为不饱和羧酸,它天然存在于许多植物。它易溶于许多有机溶剂。
  • 模铸化石模铸化石(英语:fossil mold and cast)是古生物遗体留在岩层或围岩中的印痕和复铸物。根据与围岩的关系被分为5种类型:印痕化石、印模化石、模核化石、铸型化石和复合模化石。印
  • 狂热宗教狂热(英语:Religious fanaticism)指一种对待自己或己方群体宗教的不加批判或过度的热情。这种人类狂热的形式也可以表现在对该宗教的参与之中,如职业、党派等。
  • 南亚运动会南亚运动会(英文:South Asian Games),是南亚地区综合性运动会,两年一度。首届南亚运动会于1984年于尼泊尔的加德满都举行。南亚运动会参赛国家和地区均为南亚体育理事会(South Asi
  • 加拿大人加拿大人(英语:Canadians;法语:Canadiens)是指把自我认同跟加拿大联系在一起的人。这种联系可能是在居住地上、法律上、历史上、或者文化上。对大多数加拿大人来说,几种或全部这样
  • 罗莎琳德·拉塞尔凯瑟琳·罗莎琳德·拉塞尔(英语:Catherine Rosalind Russell,1907年6月4日-1976年11月28日),美国演员,曾获得一次东尼奖、五次金球奖,另外亦曾四次提名奥斯卡最佳女主角奖。她曾于19
  • span class=nowrapZrO(NOsub3/sub)sub2/sub/spa硝酸氧锆是一种无机化合物,化学式为ZrO(NO3)2。硝酸氧锆可以用于制备二氧化锆和其它含锆化合物。硝酸氧锆的无水物可由四碘化锆和四氧化二氮在四氯化碳中于室温反应得到。水
  • ICD-10 第五章:精神和行为障碍§使用化学药物、物质或酒精引起的精神和行为障碍ICD-10 第五章:精神和行为障碍(英语:ICD-10 Chapter V: Mental and behavioural disorders#(F10–F19) Mental and behavioural disorders),为世界卫生组织发布的、ICD-10规定的
  • GAD67谷氨酸脱羧酶(英语:Glutamate decarboxylase;GAD)是一个催化谷氨酸脱羧为γ-氨基丁酸并释放CO2的酶。此酶使用磷酸吡哆醛作为一个辅因子。此反应以如下方式进行:此酶在哺乳动物中