偏最小二乘回归

✍ dations ◷ 2025-04-02 10:26:39 #偏最小二乘回归
偏最小二乘回归(英语:Partial least squares regression, PLS回归)是一种统计学方法,与主成分回归有关系,但不是寻找响应和独立变量之间最小方差的超平面,而是通过投影预测变量和观测变量到一个新空间来寻找一个线性回归模型。因为数据X和Y都会投影到新空间,PLS系列的方法都被称为双线性因子模型。当Y是分类数据时有“偏最小二乘判别分析(英语:Partial least squares Discriminant Analysis, PLS-DA)”,是PLS的一个变形。偏最小二乘用于查找两个矩阵(X和Y)的基本关系,即一个在这两个空间对协方差结构建模的隐变量方法。偏最小二乘模型将试图找到X空间的多维方向来解释Y空间方差最大的多维方向。偏最小二乘回归特别适合当预测矩阵比观测的有更多变量,以及X的值中有多重共线性的时候。相比之下,标准的回归在这些情况下不见效(除非它是吉洪诺夫正则化)。偏最小二乘算法被用在偏最小二乘路径建模中, 一个建立隐变量(原因不能没有实验和拟实验来确定,但一个典型的模型会基于之前理论假设(隐变量影响衡量指标的表现)的隐变量模型)这种技术是结构方程模型的一种形式,与经典方法不同的是基于组件而不是基于协方差。偏最小二乘来源于瑞典统计学家Herman Wold,然后由他的儿子Svante Wold发展。偏最小二乘的另一个词(根据Svante Wold)是投影到潜在结构,但偏最小二乘法依然在许多领域占据着主导地位。尽管最初的应用是在社会科学中,偏最小二乘回归今天被广泛用于化学计量学和相关领域。它也被用于生物信息学,sensometrics,神经科学和人类学。而相比之下,偏最小二乘回归最常用于社会科学、计量经济学、市场营销和战略管理。偏最小二乘的一般多元底层模型是其中 X {displaystyle X} 是一个 n × m {displaystyle ntimes m} 的预测矩阵, Y {displaystyle Y} 是一个 n × p {displaystyle ntimes p} 的响应矩阵; T {displaystyle T} 和 U {displaystyle U} 是 n × l {displaystyle ntimes l} 的矩阵,分别为 X {displaystyle X} 的投影(“X分数”、“组件”或“因子”矩阵)和 Y {displaystyle Y} 的投影(“Y分数”); P {displaystyle P} 和 Q {displaystyle Q} 分别是 m × l {displaystyle mtimes l} 和 p × l {displaystyle ptimes l} 的正交载荷矩阵,以及矩阵 E {displaystyle E} 和 F {displaystyle F} 是错误项,假设是独立同分布的随机正态变量。对 X {displaystyle X} 和 Y {displaystyle Y} 分解来最大化 T {displaystyle T} 和 U {displaystyle U} 之间的协方差。偏最小二乘的许多变量是为了估计因子和载荷矩阵 T , U , P {displaystyle T,U,P} 和 Q {displaystyle Q} 。它们中大多数构造了 X {displaystyle X} 和 Y {displaystyle Y} 之间线性回归的估计 Y = X B ~ + B ~ 0 {displaystyle Y=X{tilde {B}}+{tilde {B}}_{0}} 。一些偏最小二乘算法只适合 Y {displaystyle Y} 是一个列向量的情况,而其它的算法则处理了 Y {displaystyle Y} 是一个矩阵的一般情况。算法也根据他们是否估计因子矩阵 T {displaystyle T} 为一个正交矩阵而不同。 最后的预测在所有不同最小二乘算法中都是一样的,但组件是不同的。PLS1是一个 Y {displaystyle Y} 是向量时广泛使用的算法。它估计 T {displaystyle T} 是一个正交矩阵。以下是伪代码(大写字母是矩阵,带上标的小写字母是向量,带下标的小写字母和单独的小写字母都是标量):这种形式的算法不需要输入 X {displaystyle X} 和 Y {displaystyle Y} 定中心,因为算法隐式处理了。这个算法的特点是收缩于 X {displaystyle X} (减去 t k t ( k ) p ( k ) T {displaystyle t_{k}t^{(k)}{p^{(k)}}^{T}} ),但向量 y {displaystyle y} 不收缩,因为没有必要(可以证明收缩 y {displaystyle y} 和不收缩的结果是一样的)。用户提供的变量 l {displaystyle l} 是回归中隐藏因子数量的限制;如果它等于矩阵 X {displaystyle X} 的秩,算法将产生 B {displaystyle B} 和 B 0 {displaystyle B_{0}} 的最小二乘回归估计。2002年,一个叫做正交投影(英语:Orthogonal Projections to Latent Structures, OPLS)的方法提出。在OPLS中,连续变量数据被分为预测的和不相关的信息。这有利于改进诊断,以及更容易解释可视化。然而,这些变化只是改善模型的可解释性,不是生产力。 L-PLS通过3个连接数据块扩展了偏最小二乘回归。 同样,OPLS-DA(英语:Discriminant Analysis, 判别分析)可能被应用在处理离散变量,如分类和生物标志物的研究。大多数统计软件包都提供偏最小二乘回归。 R中的‘pls’包提供了一系列算法。

相关

  • 亚美大陆亚美大陆(Asiamerica)是一块由劳亚大陆形成的大陆,而浅海将之分为位于西方的欧亚大陆与位于东方的北美洲。存在于白垩纪晚期到始新世,并在第四纪更新世再次出现。5千万年内,这块
  • 逆转录聚合酶链式反应逆转录PCR,或者称逆转录PCR(reverse transcription-PCR, RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形。在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板透过PCR
  • pH计pH计是一种用于测量液体的pH值的电子仪器(也有特殊的探针来测量半固体物质),可以确认物质的酸碱性。一个典型的pH计由一个特殊的测量探头〔玻璃电极(glass electrode)〕连接到电
  • 鲁滨逊漂流记《鲁滨逊漂流记》(英语:Robinson Crusoe,又译作鲁滨孙漂流记,或鲁宾逊漂流记,鲁宾孙漂流记。直译作鲁宾逊·克鲁索)是一本由丹尼尔·笛福59岁时所著的第一部小说,首次出版于1719年4
  • 头孢类头孢菌素(法语:Cephalosporine、英语:Cephalosporin),又名先锋霉素,是一系列属于β内酰胺类的抗生素。与头霉素一并细分为头孢烯。头孢菌素化合物最初是于1948年,由意大利科学家Giu
  • 国民生活安定紧急措置法国民生活安定紧急措置法(日语:国民生活安定緊急措置法/こくみんせいかつあんていきんきゅうそちほう,昭和48年12月22日法律第121号)是1973年制定的日本法律,当时正值第一次石油危
  • 年代记年代记(Chronicle)是一种用年代来排序的来记录历史事实和事件的文献记载方法。通常同时考虑历史上重要事件和本地事件的权重,此用来记录发生的和年代记编纂者的观点。对比故事
  • 消防警报器消防警报器是一种装在建筑物内或特定地方的警报器,以在火灾可能发生时警告,使人们可即时应变,进而降低生命、财产的损失。消防警报器有很多种类,最常见的为声光报警器,其动作原理
  • 1776年1776年是闰年;开始的第一天在格里历是星期一;在儒略历是星期五。截至1776年,格里历比儒略历提前11天,直到1923年。
  • 城关区城关区(藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomolangm