偏最小二乘回归

✍ dations ◷ 2025-09-18 14:32:53 #偏最小二乘回归
偏最小二乘回归(英语:Partial least squares regression, PLS回归)是一种统计学方法,与主成分回归有关系,但不是寻找响应和独立变量之间最小方差的超平面,而是通过投影预测变量和观测变量到一个新空间来寻找一个线性回归模型。因为数据X和Y都会投影到新空间,PLS系列的方法都被称为双线性因子模型。当Y是分类数据时有“偏最小二乘判别分析(英语:Partial least squares Discriminant Analysis, PLS-DA)”,是PLS的一个变形。偏最小二乘用于查找两个矩阵(X和Y)的基本关系,即一个在这两个空间对协方差结构建模的隐变量方法。偏最小二乘模型将试图找到X空间的多维方向来解释Y空间方差最大的多维方向。偏最小二乘回归特别适合当预测矩阵比观测的有更多变量,以及X的值中有多重共线性的时候。相比之下,标准的回归在这些情况下不见效(除非它是吉洪诺夫正则化)。偏最小二乘算法被用在偏最小二乘路径建模中, 一个建立隐变量(原因不能没有实验和拟实验来确定,但一个典型的模型会基于之前理论假设(隐变量影响衡量指标的表现)的隐变量模型)这种技术是结构方程模型的一种形式,与经典方法不同的是基于组件而不是基于协方差。偏最小二乘来源于瑞典统计学家Herman Wold,然后由他的儿子Svante Wold发展。偏最小二乘的另一个词(根据Svante Wold)是投影到潜在结构,但偏最小二乘法依然在许多领域占据着主导地位。尽管最初的应用是在社会科学中,偏最小二乘回归今天被广泛用于化学计量学和相关领域。它也被用于生物信息学,sensometrics,神经科学和人类学。而相比之下,偏最小二乘回归最常用于社会科学、计量经济学、市场营销和战略管理。偏最小二乘的一般多元底层模型是其中 X {displaystyle X} 是一个 n × m {displaystyle ntimes m} 的预测矩阵, Y {displaystyle Y} 是一个 n × p {displaystyle ntimes p} 的响应矩阵; T {displaystyle T} 和 U {displaystyle U} 是 n × l {displaystyle ntimes l} 的矩阵,分别为 X {displaystyle X} 的投影(“X分数”、“组件”或“因子”矩阵)和 Y {displaystyle Y} 的投影(“Y分数”); P {displaystyle P} 和 Q {displaystyle Q} 分别是 m × l {displaystyle mtimes l} 和 p × l {displaystyle ptimes l} 的正交载荷矩阵,以及矩阵 E {displaystyle E} 和 F {displaystyle F} 是错误项,假设是独立同分布的随机正态变量。对 X {displaystyle X} 和 Y {displaystyle Y} 分解来最大化 T {displaystyle T} 和 U {displaystyle U} 之间的协方差。偏最小二乘的许多变量是为了估计因子和载荷矩阵 T , U , P {displaystyle T,U,P} 和 Q {displaystyle Q} 。它们中大多数构造了 X {displaystyle X} 和 Y {displaystyle Y} 之间线性回归的估计 Y = X B ~ + B ~ 0 {displaystyle Y=X{tilde {B}}+{tilde {B}}_{0}} 。一些偏最小二乘算法只适合 Y {displaystyle Y} 是一个列向量的情况,而其它的算法则处理了 Y {displaystyle Y} 是一个矩阵的一般情况。算法也根据他们是否估计因子矩阵 T {displaystyle T} 为一个正交矩阵而不同。 最后的预测在所有不同最小二乘算法中都是一样的,但组件是不同的。PLS1是一个 Y {displaystyle Y} 是向量时广泛使用的算法。它估计 T {displaystyle T} 是一个正交矩阵。以下是伪代码(大写字母是矩阵,带上标的小写字母是向量,带下标的小写字母和单独的小写字母都是标量):这种形式的算法不需要输入 X {displaystyle X} 和 Y {displaystyle Y} 定中心,因为算法隐式处理了。这个算法的特点是收缩于 X {displaystyle X} (减去 t k t ( k ) p ( k ) T {displaystyle t_{k}t^{(k)}{p^{(k)}}^{T}} ),但向量 y {displaystyle y} 不收缩,因为没有必要(可以证明收缩 y {displaystyle y} 和不收缩的结果是一样的)。用户提供的变量 l {displaystyle l} 是回归中隐藏因子数量的限制;如果它等于矩阵 X {displaystyle X} 的秩,算法将产生 B {displaystyle B} 和 B 0 {displaystyle B_{0}} 的最小二乘回归估计。2002年,一个叫做正交投影(英语:Orthogonal Projections to Latent Structures, OPLS)的方法提出。在OPLS中,连续变量数据被分为预测的和不相关的信息。这有利于改进诊断,以及更容易解释可视化。然而,这些变化只是改善模型的可解释性,不是生产力。 L-PLS通过3个连接数据块扩展了偏最小二乘回归。 同样,OPLS-DA(英语:Discriminant Analysis, 判别分析)可能被应用在处理离散变量,如分类和生物标志物的研究。大多数统计软件包都提供偏最小二乘回归。 R中的‘pls’包提供了一系列算法。

相关

  • 恋尸癖恋尸,是个人对尸体表现爱恋或性吸引的现象。美国精神医学学会在《精神疾病诊断与统计手册》中把恋尸列为“性欲倒错”。但是恋尸行为的含意显然颇为多样。研究者在访谈恋尸者
  • 杓会厌肌杓会厌肌(aryepiglottic muscle、aryepiglotticus)是一种在从杓状软骨到会厌之杓状会厌襞中运行的喉部肌肉。杓会厌肌本条目包含来自属于公共领域版本的《格雷氏解剖学》之内
  • 塔恩-加龙省塔恩-加龙省(法文:Tarn-et-Garonne)是法国朗格多克-鲁西永-南部-比利牛斯大区所辖的省份。该省编号为82。5个海外省及大区
  • 理查·海因斯理查·奥尔丁·海因斯,FRS(英语:Richard Olding Hynes,1944年11月29日-),英国暨美国籍生物学家,霍华德·休斯医学研究所研究员以及麻省理工学院Daniel K. Ludwig 癌症中心教授。海因
  • 氢经济氢经济(英文:Hydrogen Economy)一词,由John Bockris(英语:John Bockris) 在美国通用汽车公司技术中心于1970年演讲所创。当时发生第一次能源危机时,主要为描绘未来氢气取代石油成为
  • 吉达吉达(阿拉伯语:جدّة‎),沙特阿拉伯麦加省一个港口城市,位于红海东岸,麦加以西64公里,吉达都市区面积1200km²,吉达市面积约560km²,人口超过3,400,000,是仅次于首都利雅得的第二大
  • 商都网商都网,原名商都信息港,是一家地区性的门户网站,隶属于中国网通河南省分公司。1997年10月25日商都信息港成立,1998年开通BBS——是河南第一个BBS系统,2000年获得网络新闻登载权,20
  • 甘肃农业大学甘肃农业大学,是位于中国甘肃省兰州市的一所公立大学。成立于1946年,至今已有70年的历史,前身是西北畜牧兽医学院,是由中国农业部和甘肃人民政府建立的大学,并成为首批国家卓越农
  • 平方微米平方微米(符号为µm²)是面积的公制单位(SI Unit),其定义是“边长为1微米的正方形的面积”。(1cm²=100000000µm²) (1mm²=1000000µm²) (1nm²=0.000001µm²)平方尧米、
  • 复仇女神号复仇女神号(英语:Nemesis)为英国东印度公司于1835至1840年在利物浦建造的一艘远洋汽轮兵舰,是英国第一艘铁壳(用钢皮作外壳包装木船)战船。该舰于1839年下水,1840年英国皇家海军命