首页 >
偏最小二乘回归
✍ dations ◷ 2025-01-23 08:12:28 #偏最小二乘回归
偏最小二乘回归(英语:Partial least squares regression, PLS回归)是一种统计学方法,与主成分回归有关系,但不是寻找响应和独立变量之间最小方差的超平面,而是通过投影预测变量和观测变量到一个新空间来寻找一个线性回归模型。因为数据X和Y都会投影到新空间,PLS系列的方法都被称为双线性因子模型。当Y是分类数据时有“偏最小二乘判别分析(英语:Partial least squares Discriminant Analysis, PLS-DA)”,是PLS的一个变形。偏最小二乘用于查找两个矩阵(X和Y)的基本关系,即一个在这两个空间对协方差结构建模的隐变量方法。偏最小二乘模型将试图找到X空间的多维方向来解释Y空间方差最大的多维方向。偏最小二乘回归特别适合当预测矩阵比观测的有更多变量,以及X的值中有多重共线性的时候。相比之下,标准的回归在这些情况下不见效(除非它是吉洪诺夫正则化)。偏最小二乘算法被用在偏最小二乘路径建模中, 一个建立隐变量(原因不能没有实验和拟实验来确定,但一个典型的模型会基于之前理论假设(隐变量影响衡量指标的表现)的隐变量模型)这种技术是结构方程模型的一种形式,与经典方法不同的是基于组件而不是基于协方差。偏最小二乘来源于瑞典统计学家Herman Wold,然后由他的儿子Svante Wold发展。偏最小二乘的另一个词(根据Svante Wold)是投影到潜在结构,但偏最小二乘法依然在许多领域占据着主导地位。尽管最初的应用是在社会科学中,偏最小二乘回归今天被广泛用于化学计量学和相关领域。它也被用于生物信息学,sensometrics,神经科学和人类学。而相比之下,偏最小二乘回归最常用于社会科学、计量经济学、市场营销和战略管理。偏最小二乘的一般多元底层模型是其中
X
{displaystyle X}
是一个
n
×
m
{displaystyle ntimes m}
的预测矩阵,
Y
{displaystyle Y}
是一个
n
×
p
{displaystyle ntimes p}
的响应矩阵;
T
{displaystyle T}
和
U
{displaystyle U}
是
n
×
l
{displaystyle ntimes l}
的矩阵,分别为
X
{displaystyle X}
的投影(“X分数”、“组件”或“因子”矩阵)和
Y
{displaystyle Y}
的投影(“Y分数”);
P
{displaystyle P}
和
Q
{displaystyle Q}
分别是
m
×
l
{displaystyle mtimes l}
和
p
×
l
{displaystyle ptimes l}
的正交载荷矩阵,以及矩阵
E
{displaystyle E}
和
F
{displaystyle F}
是错误项,假设是独立同分布的随机正态变量。对
X
{displaystyle X}
和
Y
{displaystyle Y}
分解来最大化
T
{displaystyle T}
和
U
{displaystyle U}
之间的协方差。偏最小二乘的许多变量是为了估计因子和载荷矩阵
T
,
U
,
P
{displaystyle T,U,P}
和
Q
{displaystyle Q}
。它们中大多数构造了
X
{displaystyle X}
和
Y
{displaystyle Y}
之间线性回归的估计
Y
=
X
B
~
+
B
~
0
{displaystyle Y=X{tilde {B}}+{tilde {B}}_{0}}
。一些偏最小二乘算法只适合
Y
{displaystyle Y}
是一个列向量的情况,而其它的算法则处理了
Y
{displaystyle Y}
是一个矩阵的一般情况。算法也根据他们是否估计因子矩阵
T
{displaystyle T}
为一个正交矩阵而不同。
最后的预测在所有不同最小二乘算法中都是一样的,但组件是不同的。PLS1是一个
Y
{displaystyle Y}
是向量时广泛使用的算法。它估计
T
{displaystyle T}
是一个正交矩阵。以下是伪代码(大写字母是矩阵,带上标的小写字母是向量,带下标的小写字母和单独的小写字母都是标量):这种形式的算法不需要输入
X
{displaystyle X}
和
Y
{displaystyle Y}
定中心,因为算法隐式处理了。这个算法的特点是收缩于
X
{displaystyle X}
(减去
t
k
t
(
k
)
p
(
k
)
T
{displaystyle t_{k}t^{(k)}{p^{(k)}}^{T}}
),但向量
y
{displaystyle y}
不收缩,因为没有必要(可以证明收缩
y
{displaystyle y}
和不收缩的结果是一样的)。用户提供的变量
l
{displaystyle l}
是回归中隐藏因子数量的限制;如果它等于矩阵
X
{displaystyle X}
的秩,算法将产生
B
{displaystyle B}
和
B
0
{displaystyle B_{0}}
的最小二乘回归估计。2002年,一个叫做正交投影(英语:Orthogonal Projections to Latent Structures, OPLS)的方法提出。在OPLS中,连续变量数据被分为预测的和不相关的信息。这有利于改进诊断,以及更容易解释可视化。然而,这些变化只是改善模型的可解释性,不是生产力。 L-PLS通过3个连接数据块扩展了偏最小二乘回归。 同样,OPLS-DA(英语:Discriminant Analysis, 判别分析)可能被应用在处理离散变量,如分类和生物标志物的研究。大多数统计软件包都提供偏最小二乘回归。
R中的‘pls’包提供了一系列算法。
相关
- 塔木德《塔木德》(希伯来文:תלמוד,Talmud,为教导或学习之意)是犹太教中认为地位仅次于《塔纳赫》的宗教文献。源于公元前2世纪至公元5世纪间,记录了犹太教的律法、条例和传统。其
- 包含式包含式(clusivity)在语言学上是指介于包容性与排除'的第一人称代词及动词之间的语法区分,亦称为包容性的"我们"及排除性的"我们"。包容性的"我们"具体包括"谈话的对象"(addresse
- 中国天文学史中国天文学史是天文学史的一个分支,也是中国科学史的一个组成部分。中国的古天文学是非常发达的,有记载的天象记录是当时世界上最丰富、最有系统。自秦汉以来,所颁布的历法有一
- 1908年第四届夏季奥林匹克运动会(英语:the Games of the IV Olympiad,法语:les Jeux de la IVe Olympiade),于1908年4月27日至1908年10月31日在英国伦敦举行。本届奥运会赛程共持187天,为
- 南达科他州南达科他州(英语:State of South Dakota),简称南达州,是美国中西部平原上地势较高的一州,过去曾是美国印地安人苏族中拉科他族(Lakota)的聚落所在。南达科他州在1889年11月2日加入美
- 桂太郎桂太郎(1848年1月4日-1913年10月10日),日本政治人物、长州藩出身(今山口县),曾任台湾总督,后来曾三度出任日本内阁总理大臣(1901年-1906年;1908年-1911年;1912年-1913年),明治维新元老之一。
- 钒族固体、 液体、 气体5族元素(又称钒族元素)是指元素周期表上第5族(ⅤB 族)的元素,位于4族元素和6族元素之间。5族元素包含钒(V)、铌(Nb)、钽(Ta)、
- 千穗谷千穗谷又名千穗苋、籽粒苋、籽粒芡、苋米(学名:Amaranthus hypochondriacus)为苋科苋属的植物。‘谷粒苋’在八千年前就已开始人工栽培了。它曾经是南美印加族 (Incas) 及阿兹
- 海丰海丰县(传统外文:Hoifung)取义“临海物丰”,是中华人民共和国广东省汕尾市下辖的一个县,位于广东省东南海滨,处在惠州市惠东县和汕尾市陆丰市之间。海丰何时置县,史存二说。一说汉,
- 阿尔伯特·艾申莫瑟阿尔伯特·艾申莫瑟(德语:Albert Eschenmoser,1925年8月5日-),在苏黎世联邦理工学院和斯克里普斯研究所工作的瑞士化学家,1986年获沃尔夫化学奖。他与拉沃斯拉夫·卢基伽一起对萜烯