三等分角

✍ dations ◷ 2025-12-09 17:05:04 #平面几何,角,数学问题

三等分角是古希腊平面几何里尺规作图领域中的著名问题,与化圆为方及倍立方问题并列为尺规作图三大难题。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。三等分角问题的内容是:“能否仅用尺规作图法将任意角度三等分?”

三等分角问题提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案 。随着十九世纪群论和域论的发展,法国数学家皮埃尔·汪策尔(英语:Pierre Wantzel)首先利用伽罗瓦理论证明,这个问题的答案是否定的:不存在仅用尺规作图法将任意角度三等分的通法。具体来说,汪策尔研究了给定单位长度后,能够用尺规作图法所能达到的长度值。所有能够经由尺规作图达到的长度值被称为规矩数,而汪策尔证明了,如果能够三等分任意角度,那么就能做出不属于规矩数的长度,从而反证出通过尺规三等分任意角是不可能的。

如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,三等分任意角是可能的。然而,作为数学问题本身,由于三等分角问题表述简单,而证明困难,并用到了高等的数学方法,在已证明三等分角问题不可能之后后,仍然有许多人尝试给出肯定的证明。

在叙述三等分问题前,首先需要介绍尺规作图的意思。尺规作图问题是从现实中具体的“直尺和圆规画图可能性”问题抽象出来的数学问题,将现实中的直尺和圆规抽象为数学上的设定,研究的是能不能在若干个具体限制之下,在有限的步骤内作出给定的图形、结构或其他目标的问题。在尺规作图中,直尺和圆规的定义是:

定义了直尺和圆规的特性后,所有的作图步骤都可以归化为五种基本的步骤,称为作图公法:

尺规作图研究的,就是是否能够通过以上五种步骤的有限次重复,达到给定的作图目标。尺规作图问题常见的形式是:“给定某某条件,能否用尺规作出某某对象?”比如:“给定一个圆,能否用尺规作出这个圆的圆心?”等等。

三等分角问题的完整叙述是:

关于这个叙述中的用词和术语,需要一一作出定义。“角”可以有两种等价的定义:一个角可以是由一点和从它出发的两条射线构成的集合,也可以是由三点和连接它们的两条线段构成的集合。以下的叙述中采取第二个定义,用三个大写英文字母或一个希腊字母表示一个角。角AOB指的是由三点A, O, B以及线段AO和OB构成的集合,也可以直接用一个希腊字母如表示。两个角AOB和A'O'B'相等,指的是以下条件:如果将线段OA沿点A延长为射线,在上面作一点C使得OC = {\displaystyle =} 等于另一个角的三分之一,指的是角等于角的三倍。而一个角AOB等于角AOC的倍( > 1为自然数),指的是可以找到点B1, B2, ... , B等,使得个角AOB1, B1OB2, ... , B-1OB都等于AOC,并且点B就是点B。

与三等分角问题相比,用尺规作图将任意角二等分要容易得多。右图具体说明了二等分一个角的步骤。依照类似的步骤,也能够将任意角四等分、八等分……但直到十九世纪,随着群论和伽罗瓦理论的出现,数学家们才认识到二等分角和三等分角本质上的不同。在现代数学语言中,更常用域扩张的理论来论述三等分角的问题。从证明三等分角的过程中可以知道,尺规作图的方法不但不能三等分任意角,也不能将任意角五等分、七等分、九等分、十一等分。其理由涉及到直线和圆的解析性质。

1837年,法国数学家汪策尔证明了,三等分角问题是没有办法完成的:15。

三等分角问题提出后,有许多基于平面几何的论证和尝试,但在十九世纪以前,一直没有完整的解答。没有人能够给出将任意角度三等分的确实做法,但开始怀疑其可能性的人之中,也没有人能够证明这样的做法一定不存在。直到十九世纪后,伽罗瓦和阿贝尔(全名:尼尔斯·阿贝尔)开创了以群论来讨论有理系数多项式方程之解的方法,人们才认识到三等分角问题的本质。

在研究各种尺规作图问题的时候,数学家们留意到,能否用尺规作出特定的图形或目标,本质是能否作出符合的长度。引进直角坐标系和解析几何以后,又可以将长度解释为坐标。比如说,作出一个圆,实际上是作出圆心的位置(坐标)和半径的长度。作出特定的某个交点或某条直线,实际上是找出它们的坐标、斜率和截距。为此,数学家引入了尺规可作性这一概念。假设平面上有两个已知的点O和A,以OA为单位长度,射线OA为x-轴正向可以为平面建立一个标准直角坐标系,平面中的点可以用横坐标和纵坐标表示,整个平面可以等价于 R 2 {\displaystyle \mathbb {R} ^{2}} (E0),那么规矩数定义为H中的点的横坐标和纵坐标表示的数。

可以证明,有理数集 Q {\displaystyle \mathbb {Q} } = {\displaystyle =} +满足一个二次方程:

其中的1+21+2以及都是L中的元素:523:78-79。这意味着,域扩张L⊆L(z)的阶数最多是2(最小多项式的阶数至多是2)。这又说明,从L开始,经过一系列(次)基本步骤得到的尺规可作点,代表了次域扩张:

而每次域扩张的阶数:都不超过2。因此,如果从基本的有理数域出发的话,就能得到如下的定理::523-524

其中的是某个小于的自然数(是已知所有有理数坐标点时,作出对应的点要经过的基本步骤数目)。|headerstyle=background:#ccccff|style=text-align:center;}}

上文已经说明,任何可以用尺规作图作出的点,其座标对应一个复规矩数,它的最小多项式次数为 2 s {\displaystyle 2^{s}} 三等分的示意图。这个想法最早由阿基米德提出:4。

首先,在直尺上有两个刻度,相距。把角上的直线延长,并作一个半径为的圆。

把直尺的一点固定在,并将直尺绕着点移动,直到其中一个刻度位于点,另一个刻度位于点,也就是说, = {\displaystyle =} 。这时,角就是角的三分之一。

要证明 a = 3 b {\displaystyle a=3b} ,我们需要利用直线上的邻角(adjacent angles on straight line),三角形的内角和(angle sum of triangle)及等腰三角形底角(base angle, isosceles triangle)。

证明:

所以, a 3 b = 0 {\displaystyle a-3b=0} ,或 a = 3 b {\displaystyle a=3b} 。证毕。:4-5

或者,可以利用三角形的外角(Exterior Angle of a Triangle)作证明。

b + b = c {\displaystyle b+b=c}

b + c = a {\displaystyle b+c=a}

b + 2 b = a {\displaystyle \Rightarrow {b}+2b=a}

a = 3 b {\displaystyle \Rightarrow {a}=3b}

同样也可证明。

尺规作图的规定来自于古希腊的柏拉图学派,他们认为仅有直线和圆是完美的形状。事实上,如果允许在作图中使用其他的曲线或形状,那么三等分任意角是可行的。例如:已知角AOB,做其角平分线OC。以直线OC为准线,点A为焦点,作一双曲线;同时以O为圆心,OA为半径做圆。设该圆与双曲线在角AOB内侧的交点为D,那么角AOD等于角AOB的三分之一。此外,麦克劳林、利马松等人也曾经设计过可以辅助三等分角的曲线。阿基米德螺线(等角螺线)也是能够直观帮助三等分角的曲线。在极坐标中,阿基米德螺线的方程是:

其中的 ρ {\displaystyle \rho } 是极径(离原点的距离), θ {\displaystyle \theta } 是幅角。由于极径和幅角成正比,所以要寻找等于给定角度三分之一的角度,只需要确定原角度对应的极径长度 ρ 0 {\displaystyle \rho _{0}} ,然后对比找出 ρ 0 3 {\displaystyle {\frac {\rho _{0}}{3}}} 对应的角度即可。:8

相关

  • 免疫能力贫弱免疫缺陷(英语:immunodeficiency)是指免疫系统抵抗传染病的能力失常或欠缺。免疫缺陷还可能降低肿瘤免疫监视功能。免疫缺陷多为继发性(secondary)免疫缺陷,不过也有些人生来就有
  • 主义撒切尔主义是英国政治家玛格丽特·撒切尔的一套经济、社会、政策主张,也可描述她本人的行事风格。撒切尔夫人在1975年至1990年间任保守党党首,并在1979年至1990年担任英国首相
  • 制造商主要的民用航空发动机生产厂商有:以下是从过去至今的飞行器引擎制造商列表。较重要的那些被显示为粗体。航空史 · 飞行器(制造商) · 飞行器发动机(制造商) · 旋翼机(制造商) ·
  • 灭多威灭多威(Methomyl),又译纳乃得,是一种氨基甲酸酯类杀虫剂,原药为白色晶体粉末,商品态为可湿性粉剂、可溶性粉剂或乳油。1966年美国杜邦公司首先以“Lannate/万灵”的商品名将其推广
  • 20182018年英联邦运动会于2018年4月4日至15日于澳大利亚昆士兰州黄金海岸举行。主办城市于2011年11月11日在圣基茨岛巴斯特尔公布,这是澳大利亚第五次举办英联邦运动会。2008年8
  • 陈锐 (明朝)陈锐(15世纪-1500年),河南江北等处行中书省庐州路合肥县(今安徽省合肥市)人,陈豫之子,陈瑄之曾孙,明朝军事将领,平江伯。陈锐继承其父平江伯爵位。成化(1465年—1487年)初年,分管三千营及
  • THANKS FOR BEIJING!!1位(公信榜·DVD音乐/综合)《THANKS FOR BEIJING!!》是2011年12月7日在日本发行的SMAP的DVD作品。本次演唱会的官方称呼为“SMAP BEIJING CONCERT 加油日本! 感谢中国! 亚洲一
  • 哈夫隆格哈夫隆格(Haflong),是印度阿萨姆邦North Cachar Hills县的一个城镇。总人口35906(2001年)。该地2001年总人口35906人,其中男性19651人,女性16255人;0—6岁人口4156人,其中男2093人,女2
  • 审稿审稿或称文字加工(copyediting)是指编辑者对文章格式、语法的修订和改善原稿的准确度。手稿或打字稿必须经过这项作业,以便日后的排版、印刷和出版。有时候因为出版商规模较小
  • 苏时学苏时学(1814年-1874年1月),字�元,号琴舫,又号爻山,晚年号猛陵山人。广西五袴厢登俊坊(今藤县藤城镇)人。清朝末年学者。清嘉庆十九年(1814年)生。道光二十六年(1846年)丙午科举人,候选内阁