四极子

✍ dations ◷ 2025-11-28 06:28:24 #电磁学,万有引力

四极子(英语:Quadrupole)是指一种电荷、电流或产生引力的质点等场源在空间中分布模式。四极子是一种特殊的空间分布,对于一般分布而言,四极子可以是其多极展开的一部分。

四极子通常用一个张量表述,四极矩张量Q是一个二阶张量,即一个迹为零的3x3矩阵(即 Q x x + Q y y + Q z z = 0 {\displaystyle Q_{xx}+Q_{yy}+Q_{zz}=0} )。四极矩张量有9个元素,但是由于对称性和迹为零的特性,其中只有5个元素是独立的。

以电荷分布为例,系统中的电荷以点电荷形式离散分布于空间中,每个点电荷的电荷量为 q {\displaystyle q} ,坐标为 r = ( r x , r y , r z ) {\displaystyle {\vec {r}}=(r_{x},r_{y},r_{z})} ,则张量 Q {\displaystyle Q} 的矩阵元为

Q i j = l q l ( 3 r i r j r 2 δ i j ) {\displaystyle Q_{ij}=\sum _{l}q_{l}(3r_{i}r_{j}-\|{\vec {r}}\|^{2}\delta _{ij})} .

其中下标 i {\displaystyle i} j {\displaystyle j} 分别遍历 x , y , z {\displaystyle x,y,z} 三个表示笛卡尔坐标的下标, δ i j {\displaystyle \delta _{ij}} 是克罗内克函数。

对于具有连续电荷密度(或质量密度)分布的系统,密度在空间中的分布以 ρ ( x , y , z ) {\displaystyle \rho (x,y,z)} 表达,此时 Q 由空间上的积分来定义:

Q i j = ρ ( 3 r i r j r 2 δ i j ) d 3 r {\displaystyle Q_{ij}=\int \,\rho (3r_{i}r_{j}-\|{\vec {r}}\|^{2}\delta _{ij})\,d^{3}\mathbf {r} }

对于一个任意的多极子体系,若它的低阶矩(单极矩和偶极矩)不是零,则四极矩的值与坐标原点的选取有关。例如,两个相反但电荷量相同的的点电荷组成的电偶极子,具有电偶极矩。若原点不在两个电荷的中点,那么这个体系的电四极矩不为零,反之则为零。如果低阶矩都是零(例如四个相同电荷量的电荷置于正方形的四个顶点上,每条边上的两个电荷异号),则电四极矩与坐标原点无关。

对于势的大小可表示为 1 / r {\displaystyle 1/r} 形式的场(例如电场和引力场),四极子对势的贡献为:

其中 R 是场源(电荷、质量等)系统指向场中某点的位移矢量,n 是与 R 同方向的单位矢量。 i , j {\displaystyle i,j} 的含义与前面相同, n i , n j {\displaystyle n_{i},n_{j}} 表示 n 在 i {\displaystyle i} j {\displaystyle j} 方向的分量。

最简单的电四极子是四个相同电荷量的电荷置于正方形的四个顶点上,每条边上的两个电荷异号。这个体系中的总电荷量为零。在此情况下,其电偶极矩都是零,但电四极矩不是零,二者皆与坐标系的选取无关。此电荷体系产生的电势由以下式子给出

其中 ϵ 0 {\displaystyle \epsilon _{0}} 是电容率, Q i j {\displaystyle Q_{ij}} 定义同上.

众所周知,磁铁分为南北两极,两极之间有磁场。然而,四极磁场将四个磁铁相互垂直放置,其中一个磁极比如南极都朝内放置,另一个磁极如北极都朝外放置,四个磁铁呈放射状。这样的结构将磁偶极矩抵消,产生一个四极矩。这样的磁场强度在大范围内衰减很快(相对于磁偶极)。磁四极子的磁场常用于在粒子加速器中聚焦带电粒子束(英语:Charged particle beam),属于强聚焦(英语:Strong focusing)方法的一种。随时间变化的磁四极子能产生电磁辐射。

由质点组成的四极子与电四极子类似,其产生的重力场可表达为:

例如,由于地球不是完美的球体,在赤道处略有隆起,地球产生的四极矩不为零。这个四极矩对于人造卫星轨道的计算非常重要,但对于月球轨道计算则影响较小。这是由于因为四极矩产生的场是 1 | R | 3 {\displaystyle {\frac {1}{|\mathbf {R} |^{3}}}} 的形式,随距离衰减很快。

重力四极矩在广义相对论中也十分重要。如果它随时间变化,就能产生重力波(与震荡的电或磁四极矩产生电磁辐射的情形类似)。只有重力四极矩或更高阶的矩能向外辐射出引力波。在重力的情境下,单极矩代表系统的总值量,是一个守恒量,不产生辐射。相同的,系统的动量为偶极矩对时间的一阶导数,也是守恒量,不随时间变化,因此偶极矩不产生辐射。而四极矩可随时间变化,因此它是能生生重力波辐射的最低阶多极矩。

能够向外辐射重力波的最简单系统是:两个相同质量的质点以其质心互相绕行作圆周运动。假设坐标系以质心作为原点,并且以质心到其中一质点的距离作为距离单位,则这个系统的四极矩为

其中 M 是两个质点各自的质量, x i {\displaystyle x_{i}} 是质点位置向量在坐标轴其中一方向的分量。当互相绕行作圆周运动时,x方向向量会旋转,使其一阶导数及二阶导数均不为0(因有速度及加速度),因此此系统可辐射出重力波。在赫尔斯-泰勒脉冲双星(为两质量相近的中子星组成的脉冲星双星系统)中找到了因重力波辐射导致能量损失的证据。

相关

  • 凝乳酶凝乳酶(英语:Rennet,又稱Rennin)是哺乳动物胃中的一种酶,可使乳汁内的蛋白质凝聚并分离为乳酪和乳清。凝乳酶存在于哺乳动物的幼儿期消化系统内,帮助消化及吸收母体(或其他哺乳类动
  • 酒店款待(Hospitality),是一个专有统称。源自5世纪前,英语的“Hospital”,意指尊重对方与自己的差异,为对方提供住宿、饮食与保护等,平等地对待病人。现在大多被人认为是尊重别人与自己
  • 二巯丁二酸2,3-二巯基丁二酸(Dimercaptosuccinic acid、英文缩写为:DMSA),别名2,3-二巯基琥珀酸,一般简称二巯基丁二酸,是一种有机硫化合物,常温下为白色结晶状粉末。因分子内含有两个巯基,所
  • 黏丝盘虫黏丝盘虫(Trichoplax adhaerens)是1883年由德国生物学家Franz Eilhard Schulze (1840-1921)在奥地利Graz大学的水族馆发现的。目前在扁盘动物门中仅确认此一种,一般称丝盘虫即
  • 不丹首相不丹政府与政治 系列条目不丹王国首相,或译不丹王国总理,是不丹王国的政府首脑。1964年原首相吉格梅·帕尔登·多吉因为推动改革,得罪军队和宗教团体而遇刺身亡,之后政局继续混
  • 弗雷德里克斯堡弗雷德里克斯堡(Fredericksburg)是位于美国弗吉尼亚州东北部的独立城市,人口19279(2000年),其中白人占73.18%、非裔美国人占20.41%、亚裔美国人占1.51%。
  • 美国矫正公司美国矫正公司(英语:Corrections Corporation of America,别称CCA,NYSE:CXW),于1983年由Tom Beasley, Doctor Robert Crants 和 T. Don Hutto创立首家私营监狱场地,而首家Houston Pro
  • 秦皇岛-深圳205国道(或“国道205线”、“G205线”)是在中国的一条国道,起点为河北省秦皇岛市山海关区,终点为广东省深圳市罗湖区东门晒布路口,全程3160千米。注:在1993年之前,205国道的终点为
  • 岛屿面积列表本条目罗列面积500平方公里以上的岛屿列表,按照面积大小排列:以下大陆通常不被视为一个岛屿。注意:澳大利亚面积为格陵兰岛的三倍,一般被视作大陆。冰帽下的南极陆地并没有连成
  • 泰丹语泰丹语,又称红泰语,是越南西北与老挝普泰族中的一支红泰人的母语。红泰人主要分布于越南的清化省,乂安省与和平省,人数约100000人。泰丹语为壮侗语系语言,属于台语支中的西南部台