四极子

✍ dations ◷ 2025-02-23 20:08:31 #电磁学,万有引力

四极子(英语:Quadrupole)是指一种电荷、电流或产生引力的质点等场源在空间中分布模式。四极子是一种特殊的空间分布,对于一般分布而言,四极子可以是其多极展开的一部分。

四极子通常用一个张量表述,四极矩张量Q是一个二阶张量,即一个迹为零的3x3矩阵(即 Q x x + Q y y + Q z z = 0 {\displaystyle Q_{xx}+Q_{yy}+Q_{zz}=0} )。四极矩张量有9个元素,但是由于对称性和迹为零的特性,其中只有5个元素是独立的。

以电荷分布为例,系统中的电荷以点电荷形式离散分布于空间中,每个点电荷的电荷量为 q {\displaystyle q} ,坐标为 r = ( r x , r y , r z ) {\displaystyle {\vec {r}}=(r_{x},r_{y},r_{z})} ,则张量 Q {\displaystyle Q} 的矩阵元为

Q i j = l q l ( 3 r i r j r 2 δ i j ) {\displaystyle Q_{ij}=\sum _{l}q_{l}(3r_{i}r_{j}-\|{\vec {r}}\|^{2}\delta _{ij})} .

其中下标 i {\displaystyle i} j {\displaystyle j} 分别遍历 x , y , z {\displaystyle x,y,z} 三个表示笛卡尔坐标的下标, δ i j {\displaystyle \delta _{ij}} 是克罗内克函数。

对于具有连续电荷密度(或质量密度)分布的系统,密度在空间中的分布以 ρ ( x , y , z ) {\displaystyle \rho (x,y,z)} 表达,此时 Q 由空间上的积分来定义:

Q i j = ρ ( 3 r i r j r 2 δ i j ) d 3 r {\displaystyle Q_{ij}=\int \,\rho (3r_{i}r_{j}-\|{\vec {r}}\|^{2}\delta _{ij})\,d^{3}\mathbf {r} }

对于一个任意的多极子体系,若它的低阶矩(单极矩和偶极矩)不是零,则四极矩的值与坐标原点的选取有关。例如,两个相反但电荷量相同的的点电荷组成的电偶极子,具有电偶极矩。若原点不在两个电荷的中点,那么这个体系的电四极矩不为零,反之则为零。如果低阶矩都是零(例如四个相同电荷量的电荷置于正方形的四个顶点上,每条边上的两个电荷异号),则电四极矩与坐标原点无关。

对于势的大小可表示为 1 / r {\displaystyle 1/r} 形式的场(例如电场和引力场),四极子对势的贡献为:

其中 R 是场源(电荷、质量等)系统指向场中某点的位移矢量,n 是与 R 同方向的单位矢量。 i , j {\displaystyle i,j} 的含义与前面相同, n i , n j {\displaystyle n_{i},n_{j}} 表示 n 在 i {\displaystyle i} j {\displaystyle j} 方向的分量。

最简单的电四极子是四个相同电荷量的电荷置于正方形的四个顶点上,每条边上的两个电荷异号。这个体系中的总电荷量为零。在此情况下,其电偶极矩都是零,但电四极矩不是零,二者皆与坐标系的选取无关。此电荷体系产生的电势由以下式子给出

其中 ϵ 0 {\displaystyle \epsilon _{0}} 是电容率, Q i j {\displaystyle Q_{ij}} 定义同上.

众所周知,磁铁分为南北两极,两极之间有磁场。然而,四极磁场将四个磁铁相互垂直放置,其中一个磁极比如南极都朝内放置,另一个磁极如北极都朝外放置,四个磁铁呈放射状。这样的结构将磁偶极矩抵消,产生一个四极矩。这样的磁场强度在大范围内衰减很快(相对于磁偶极)。磁四极子的磁场常用于在粒子加速器中聚焦带电粒子束(英语:Charged particle beam),属于强聚焦(英语:Strong focusing)方法的一种。随时间变化的磁四极子能产生电磁辐射。

由质点组成的四极子与电四极子类似,其产生的重力场可表达为:

例如,由于地球不是完美的球体,在赤道处略有隆起,地球产生的四极矩不为零。这个四极矩对于人造卫星轨道的计算非常重要,但对于月球轨道计算则影响较小。这是由于因为四极矩产生的场是 1 | R | 3 {\displaystyle {\frac {1}{|\mathbf {R} |^{3}}}} 的形式,随距离衰减很快。

重力四极矩在广义相对论中也十分重要。如果它随时间变化,就能产生重力波(与震荡的电或磁四极矩产生电磁辐射的情形类似)。只有重力四极矩或更高阶的矩能向外辐射出引力波。在重力的情境下,单极矩代表系统的总值量,是一个守恒量,不产生辐射。相同的,系统的动量为偶极矩对时间的一阶导数,也是守恒量,不随时间变化,因此偶极矩不产生辐射。而四极矩可随时间变化,因此它是能生生重力波辐射的最低阶多极矩。

能够向外辐射重力波的最简单系统是:两个相同质量的质点以其质心互相绕行作圆周运动。假设坐标系以质心作为原点,并且以质心到其中一质点的距离作为距离单位,则这个系统的四极矩为

其中 M 是两个质点各自的质量, x i {\displaystyle x_{i}} 是质点位置向量在坐标轴其中一方向的分量。当互相绕行作圆周运动时,x方向向量会旋转,使其一阶导数及二阶导数均不为0(因有速度及加速度),因此此系统可辐射出重力波。在赫尔斯-泰勒脉冲双星(为两质量相近的中子星组成的脉冲星双星系统)中找到了因重力波辐射导致能量损失的证据。

相关

  • 硫酸孕烯醇酮硫酸孕烯醇酮(英语:Pregnenolone sulfate,缩写PREG-S、PREGS,也可称为孕-5-烯-3β-硫酸酯-20-酮,pregn-5-en-3β-ol-20-one 3β-sulfate)是一种内源性的神经甾体,合成自孕烯醇酮,常
  • ε逆转录病毒属ε反转录病毒属是反转录病毒科下的一个属,此属的病毒主要会感染鱼类,例如大眼梭鲈皮肤肉瘤病毒(Walleye dermal sarcoma virus)和大眼梭鲈鱼表皮过度增生病毒(Walleye epidermal
  • Nasub3/subIrClsub6/sub六氯合铱(III)酸钠是一种配位化合物,化学式为Na3,它是暗绿色晶体,易溶于水,可以形成水合物。六氯合铱(III)酸钠可由三氯化铱和氯化钠在浓溶液中反应得到:从溶液中可以结晶出Na3·
  • 荷质比荷质比又称比荷、比电荷,是一个带电粒子所带电荷与其质量之比,其单位为C/kg。计算时,粒子无论带何种电荷,应一律代入正值计算。电子电荷 e
  • 布容尼斯-松山反转布容尼斯-松山反转是以伯纳德·布容尼斯(英语:Bernard Brunhes)和松山基范命名的地质事件。地磁场约于 781,000 年前经历最近一次的地磁逆转事件。由于逆转过程历时的估算众说
  • 花道华道(日语:華道/かどう Kadō、生け花/いけばな Ikebana),又称花道、日式插花,是日本传统的插花艺术,它是活植物花材造型的艺术。最早起源于古代中国,后来传入韩国和日本。华道在日
  • 莎当妮霞多丽(法语:Chardonnay,发音:),亦译莎当妮,属欧亚种,原产自法国勃艮第,现在在全世界范围内广泛种植号称葡萄皇后。可以酿造变化多端的白葡萄酒。该品种历史悠久,在勃艮第南部的马贡
  • 德克·诺维茨基德克·维尔纳·诺维茨基(德语:Dirk Werner Nowitzki,1978年6月19日-),德国籍退役篮球运动员,曾效力美国职业篮球(NBA)达拉斯独行侠(旧译达拉斯小牛队),NBA史上第六位达成30000分的球员,场
  • 南召县南召县是中国河南省南阳市的下辖一个县。全县面积2946平方公里,人口约60万人,地形主要为丘陵。秦昭襄王三十五年(前272年),置南阳郡,始置雉县。明成化十二年(1476年)置南召县,因
  • 伦敦及东北铁路4468号机车伦敦及东北铁路(LNER)4468号机车或英国铁路60022号机车,别称野鸭号,是伦敦及东北铁路A4型蒸汽机车中的一辆,于1938年唐卡斯特工厂(英语:Doncaster Works)制造。该机车曾创造了时速12