风险厌恶

✍ dations ◷ 2025-09-18 23:10:49 #风险厌恶

风险厌恶 (或译做风险趋避、风险规避, 英语:risk aversion)是一个经济学、金融学和心理学的一个概念,用来解释在不确定状况下消费者和投资者的行为。 风险厌恶是指一个人面对不确定收益的交易时,更倾向于选择较保险但是也可能具有较低期望收益的交易。 例如一个风险厌恶的投资者,会选择将他的钱存在银行以获得较低但确定的利息,而不愿意将钱用于购买股票,承担损失的风险以获得较高的期望收益。与风险厌恶程度相对的有“风险容忍”(risk taker)。

假如某人可以选择有风险的赌局(在100元和一无所获之间下注,两种情况各有50%的概率), 或者可选择一个可以确定得到收益的稳定投资。 如果他宁可选择一个低于五十元收益的稳定投资,也不愿选择有风险的赌局(赌局的期望值是五十元),那么他是风险厌恶的;如果有风险的赌注和收益五十元的稳定投资,对他而言, 两者没什么差别,那么他是“风险中性(英语:risk neutral)”(或风险中立;英语:risk neutral)的;如果他要求高于50元以上的收益才肯放弃下注,那么他是“风险偏爱”(或风险爱好;英语:risk seeking)的。下注的平均收益,即期望值,应该是50元。为放弃下注而要求的确定收益被称为“无风险对等值”,这个值和期望值之差被称作“风险差额”。

在效用理论中, 一个消费者有一个效用函数 U ( x ) {\displaystyle U(x)} ,其中 x {\displaystyle x} 表示他拥有的货币或消费品(在上面的例子中,x可以是0或100)。这里,我们不考虑货币的时间价值。当且仅当某人的效用函数是凹函数(concave)时,他才是风险厌恶的。比如,u(0)=0,u(100)=100,u(40)=50,u(50)=60。

对于上例中的赌局(bet),其期望收益为:

风险溢价意味着他最多愿意牺牲10块钱的期望价值,以达到获得多少金钱的保障。换句话说,对于他来说,获得确定的40元,与参与打赌(期望收益为50)是无差别的,而如果确定的收益大于40,他将选择该确定收益。

效用函数有两个关键的性质:单调递增,凹函数(concave)。(1)单调递增说明人们觉得钱越多越好:更多的钱产生更大的效应能够,而对于打赌,人们会选择一阶随机占优(first-order stochastically dominant)的那个。(2)效用函数是凹函数说明他是风险厌恶的:确定的期望收益总是优于有风险的同样数量的期望收益。

u ( c ) {\displaystyle u(c)} 的曲率越大,代表其越风险厌恶。然而,因为期望效用函数不只一种定义(定义只取决于仿射变换, affine transformations),需要一种不变的关于这些变换的衡量方法。衡量风险厌恶程度的方法之一是绝对风险厌恶的Arrow-Pratt测量法(Arrow-Pratt measure of absolute risk-aversion, ARA)。这是以经济学家 Kenneth Arrow (1965) 和 John W. Pratt (1964)来命名的,也叫做绝对风险厌恶系数(coefficient of absolute risk aversion),其定义如下:

下面几种表述都是与此定义相关的:

1.指数效用(exponential utility), 形式为 u ( c ) = 1 e x p ( a c ) {\displaystyle u(c)=1-exp(-ac)} ,唯一表示恒定绝对风险厌恶(constant absolute risk aversion, CARA): A ( c ) = a {\displaystyle A(c)=a} ,且独立于 c {\displaystyle c}

2.双曲线绝对风险厌恶(hyperbolic absolute risk aversion, HARA)是最普遍的效用函数类别,通常在实际中应用,constant relative risk aversion (CRRA) 因为它们的数学易处理性而被经常使用。

I. 恒定型绝对风险厌恶(Constant Absolute Risk Aversion, CARA):对于风险的厌恶程度不取决于资产的多少,即使资产增加,对风险的厌恶不变,最高投资数额不变,即 d A ( c ) / d c = 0 {\displaystyle dA(c)/dc=0} , 则可以称作恒定型绝对风险厌恶。
II. 递减型绝对风险厌恶(Decreasing Absolute Risk Aversion, DARA):随着资产的增加,对于风险的厌恶程度降低,最高投资数额变大, d A ( c ) / d c < 0 {\displaystyle dA(c)/dc<0} , 则可以称作递减型绝对风险厌恶。
III. 递增型绝对风险厌恶(Increasing Absolute Risk Aversion, IARA):随着资产的增加,对于风险的厌恶程度增加,最高投资数额变小,即 d A ( c ) / d c > 0 {\displaystyle dA(c)/dc>0} , 则可以称作递增型绝对风险厌恶。

相对风险厌恶(Relative Risk Aversion):在一项具有风险的投资中,愿意投入的资金占总资产比率的意愿程度。公式定义如下:

相关

  • 反义词反义词或相反词是语言学上的现象,指的是某一对字或单词具有相反意义或定义,如“有”和“无”、“爱”和“恨”、“冷”和“热”都是反义词。一种语言中的所有词汇不一定都有对
  • 转化转型(英语:transformation),又译转化,即细胞通过摄取外源遗传物质(DNA或RNA)而发生遗传学改变的过程。在转化过程中,转化的DNA片段称为转化因子。受体菌只有处在感受态时才能够摄
  • 人声人声是通过人类呼吸器官振动产生的声音。关键器官为声带的此种人类行为,通过空气介质传播,并能被人类听觉器官而感知。除此,人声亦与其他声音相同,也是一种波动现象。复杂的人声
  • 阿尔维德·卡尔森阿尔维德·卡尔森(瑞典语:Arvid Carlsson,1923年1月25日-2018年6月29日),瑞典科学家。他最著名的成就是对神经递质多巴胺的研究以及该物质在帕金森氏症中的作用,他也因此成为2000年
  • 纳吉布拉穆罕默德·纳吉布拉·阿赫马德扎伊(普什图语:ډاکټر نجیب ﷲ احمدزۍ‎,英语:Mohammed Najibullah Ahmadzai,1947年8月6日-1996年9月28日),阿富汗政治家、共产主义者,出生
  • 台北市次分区列表次分区为台北市政府自2000年开始施行的辅助行政划分,设置于市辖区之下。每一市辖区依据实际发展情形配合当地各里特色,划定4到7个次分区,将具有邻近特性,且若干文化、历史特质的
  • 艾兹格·迪杰斯特拉艾兹赫尔·韦伯·戴克斯特拉(荷兰语:Edsger Wybe Dijkstra,荷兰语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida
  • 葡萄柚葡萄柚(学名:Citrus × paradisi),是芸香科柑橘属的一种亚热带植物。为常见的水果之一。常绿乔木,通常高度为5-6米,最高可达13-15米。叶子狭长,为深绿色,花为四瓣白色。果实为扁球形
  • 鹰嘴豆泥鹰嘴豆泥或鹰嘴豆沙(阿拉伯语:حُمُّص‎、拉丁化:Hummus)是黎凡特食物。鹰嘴豆泥常与蔬菜、面包和烤肉一同供应。鹰嘴豆泥可以含有柠檬、大蒜、芝麻酱和辣椒。作为主材料的
  • 切希尔县切希尔县(Cheshire County, Hampshire)是美国新罕布什尔州西南部的一个县,西邻佛蒙特州,南邻马萨诸塞州。面积1,888平方公里。根据美国2000年人口普查,共有人口73,825人。县治基