风险厌恶

✍ dations ◷ 2025-06-08 06:41:57 #风险厌恶

风险厌恶 (或译做风险趋避、风险规避, 英语:risk aversion)是一个经济学、金融学和心理学的一个概念,用来解释在不确定状况下消费者和投资者的行为。 风险厌恶是指一个人面对不确定收益的交易时,更倾向于选择较保险但是也可能具有较低期望收益的交易。 例如一个风险厌恶的投资者,会选择将他的钱存在银行以获得较低但确定的利息,而不愿意将钱用于购买股票,承担损失的风险以获得较高的期望收益。与风险厌恶程度相对的有“风险容忍”(risk taker)。

假如某人可以选择有风险的赌局(在100元和一无所获之间下注,两种情况各有50%的概率), 或者可选择一个可以确定得到收益的稳定投资。 如果他宁可选择一个低于五十元收益的稳定投资,也不愿选择有风险的赌局(赌局的期望值是五十元),那么他是风险厌恶的;如果有风险的赌注和收益五十元的稳定投资,对他而言, 两者没什么差别,那么他是“风险中性(英语:risk neutral)”(或风险中立;英语:risk neutral)的;如果他要求高于50元以上的收益才肯放弃下注,那么他是“风险偏爱”(或风险爱好;英语:risk seeking)的。下注的平均收益,即期望值,应该是50元。为放弃下注而要求的确定收益被称为“无风险对等值”,这个值和期望值之差被称作“风险差额”。

在效用理论中, 一个消费者有一个效用函数 U ( x ) {\displaystyle U(x)} ,其中 x {\displaystyle x} 表示他拥有的货币或消费品(在上面的例子中,x可以是0或100)。这里,我们不考虑货币的时间价值。当且仅当某人的效用函数是凹函数(concave)时,他才是风险厌恶的。比如,u(0)=0,u(100)=100,u(40)=50,u(50)=60。

对于上例中的赌局(bet),其期望收益为:

风险溢价意味着他最多愿意牺牲10块钱的期望价值,以达到获得多少金钱的保障。换句话说,对于他来说,获得确定的40元,与参与打赌(期望收益为50)是无差别的,而如果确定的收益大于40,他将选择该确定收益。

效用函数有两个关键的性质:单调递增,凹函数(concave)。(1)单调递增说明人们觉得钱越多越好:更多的钱产生更大的效应能够,而对于打赌,人们会选择一阶随机占优(first-order stochastically dominant)的那个。(2)效用函数是凹函数说明他是风险厌恶的:确定的期望收益总是优于有风险的同样数量的期望收益。

u ( c ) {\displaystyle u(c)} 的曲率越大,代表其越风险厌恶。然而,因为期望效用函数不只一种定义(定义只取决于仿射变换, affine transformations),需要一种不变的关于这些变换的衡量方法。衡量风险厌恶程度的方法之一是绝对风险厌恶的Arrow-Pratt测量法(Arrow-Pratt measure of absolute risk-aversion, ARA)。这是以经济学家 Kenneth Arrow (1965) 和 John W. Pratt (1964)来命名的,也叫做绝对风险厌恶系数(coefficient of absolute risk aversion),其定义如下:

下面几种表述都是与此定义相关的:

1.指数效用(exponential utility), 形式为 u ( c ) = 1 e x p ( a c ) {\displaystyle u(c)=1-exp(-ac)} ,唯一表示恒定绝对风险厌恶(constant absolute risk aversion, CARA): A ( c ) = a {\displaystyle A(c)=a} ,且独立于 c {\displaystyle c}

2.双曲线绝对风险厌恶(hyperbolic absolute risk aversion, HARA)是最普遍的效用函数类别,通常在实际中应用,constant relative risk aversion (CRRA) 因为它们的数学易处理性而被经常使用。

I. 恒定型绝对风险厌恶(Constant Absolute Risk Aversion, CARA):对于风险的厌恶程度不取决于资产的多少,即使资产增加,对风险的厌恶不变,最高投资数额不变,即 d A ( c ) / d c = 0 {\displaystyle dA(c)/dc=0} , 则可以称作恒定型绝对风险厌恶。
II. 递减型绝对风险厌恶(Decreasing Absolute Risk Aversion, DARA):随着资产的增加,对于风险的厌恶程度降低,最高投资数额变大, d A ( c ) / d c < 0 {\displaystyle dA(c)/dc<0} , 则可以称作递减型绝对风险厌恶。
III. 递增型绝对风险厌恶(Increasing Absolute Risk Aversion, IARA):随着资产的增加,对于风险的厌恶程度增加,最高投资数额变小,即 d A ( c ) / d c > 0 {\displaystyle dA(c)/dc>0} , 则可以称作递增型绝对风险厌恶。

相对风险厌恶(Relative Risk Aversion):在一项具有风险的投资中,愿意投入的资金占总资产比率的意愿程度。公式定义如下:

相关

  • 疲劳疲倦或疲劳,是生理信号的一种。是生物其中一种的不舒服感觉。大致可分为精神上和肉体上。短期的疲倦通常是由于过度活动并且缺乏休息所致,严重疲倦或可致命。一般认为疲倦的人
  • 公共工程管理局公共工程管理局(英文:Public Works Administration, PWA),为美国罗斯福新政时期(1933年-1939年)一个联邦机构,其由全国产业复兴法案(National Industrial Recovery Act)授权实施,旨在
  • 法兰克王国法兰克王国(拉丁语:Regnum Francorum;法语:royaume des Francs;意为“法兰克人的王国”)是5世纪至9世纪在西欧和中欧的一个王国,其疆域与罗马帝国在西欧的疆域基本相同。法兰克王国
  • CHg有机汞化合物是含有碳-汞键的一类金属有机化合物,这类化合物通常都有很大的毒性。烷基碘化汞可由活泼碘代烃和汞在光照下反应得到,活泼碘代烃有碘甲烷、烯丙基碘、炔丙基碘和
  • 血管收缩素I1N9U, 1N9V, 2JP8, 2WXW, 2X0B· hormone activity · hormone activity · protein binding · growth factor activity · acetyltransferase activator activity ·
  • 马上长矛比武长枪比武大赛(Jousting 或 Tilting),是两名骑士之间的武术竞技,在十四至十六世纪间的中世纪以及文艺复兴早期最为兴盛。参赛的骑士一般都备有三种武器:长枪、单手剑和一种匕首(Ro
  • 防火遮蔽防火遮蔽(英语:fire shelter)是一种安全装置,也是防火的最后手段,森林消防员在野火中受困时可利用此装置来保命。尽管防火遮蔽经受不了长时间与火焰的直接接触,但在草原大火之类的
  • 华侨城华侨城(英语:Oversea Chinese Town,缩写:OCT),位于中国深圳市南山区深圳湾畔,前身为深圳机场的拟定选址(后改于宝安区黄田建造,即今日的宝安机场),占地4.8平方公里,内有多项旅游设施,如锦
  • 特使航空特使航空(英语:Envoy Air)是一家总部设于沃斯堡、枢纽设于达拉斯-沃斯堡国际机场的美国航空公司,前称美鹰航空(英语:American Eagle Airlines)。特使航空是美国航空集团的全资子公
  • 宁波市体育中心坐标:29°52′16.89″N 121°34′53.66″E / 29.8713583°N 121.5815722°E / 29.8713583; 121.5815722宁波市体育中心始建于1993年,位于宁波市鄞州区中兴路360号,占地面积约36