杰斐缅柯方程

✍ dations ◷ 2025-06-09 10:37:49 #杰斐缅柯方程
在电磁学里,给予含时电荷密度分布和电流密度分布,可以使用杰斐缅柯方程(Jefimenko equation)来计算电场和磁场。这方程因其发现者物理学家欧雷格·杰斐缅柯(英语:Oleg D. Jefimenko)而命名。杰斐缅柯方程是麦克斯韦方程组对于这些电荷密度分布和电流密度分布的解答。在真空内,电场 E {displaystyle mathbf {E} } 和磁场 B {displaystyle mathbf {B} } 可以用杰斐缅柯方程表达为:其中, r {displaystyle mathbf {r} } 是场位置, r ′ {displaystyle mathbf {r} '} 是源位置, t {displaystyle t} 是现在时间, t r {displaystyle t_{r}} 是推迟时间, ϵ 0 {displaystyle epsilon _{0}} 是电常数, μ 0 {displaystyle mu _{0}} 是磁常数, ρ {displaystyle rho } 是电荷密度, ρ ˙   = d e f   ∂ ρ ∂ t {displaystyle {dot {rho }} {stackrel {def}{=}} {frac {partial rho }{partial t}}} 定义为电荷密度对于时间的偏导数, J {displaystyle mathbf {J} } 是电流密度, J ˙   = d e f   ∂ J ∂ t {displaystyle {dot {mathbf {J} }} {stackrel {def}{=}} {frac {partial mathbf {J} }{partial t}}} 定义为电流密度对于时间的偏导数, V ′ {displaystyle {mathcal {V}}'} 是体积分的空间, d 3 r ′ {displaystyle d^{3}mathbf {r} '} 是微小体元素。给予电荷密度分布 ρ ( r ′ , t ) {displaystyle rho (mathbf {r} ',,t)} 和电流密度分布 J ( r ′ , t ) {displaystyle mathbf {J} (mathbf {r} ',,t)} ,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 和推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 分别用方程定义为(参阅推迟势)推迟时间 t r {displaystyle t_{r}} 定义为现在时间 t {displaystyle t} 减去光波传播的时间:其中, c {displaystyle c} 是光速。在这两个非静态的推迟势方程内,源电荷密度和源电流密度都跟推迟时间 t r {displaystyle t_{r}} 有关,而不是跟时间无关。推迟势与电场 E {displaystyle mathbf {E} } 、磁场 B {displaystyle mathbf {B} } 的关系分别为设定 R {displaystyle {boldsymbol {mathfrak {R}}}} 为从源位置到场位置的分离矢量:场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 和时间 t {displaystyle t} 都是自变数。分离矢量 R {displaystyle {boldsymbol {mathfrak {R}}}} 和其大小 R {displaystyle {mathfrak {R}}} 都是应变数,跟场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 有关。推迟时间 t r = t − R / c {displaystyle t_{r}=t-{mathfrak {R}}/c} 也是应变数,跟时间 t {displaystyle t} 、分离距离 R {displaystyle {mathfrak {R}}} 有关。推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的全微分是注意到所以,源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的梯度是其中, ρ ˙ ( r ′ , t r ) {displaystyle {dot {rho }}(mathbf {r} ',,t_{r})} 定义为 ∂ ρ ( r ′ , t r ) ∂ t {displaystyle {frac {partial rho (mathbf {r} ',,t_{r})}{partial t}}} 。将这公式代入,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 对于时间的偏导数为:综合前面这两个公式,可以得到电场的杰斐缅柯方程。同样方法,可以得到磁场的杰斐缅柯方程。对于任意介质,将前面所述电场和磁场的方程加以延伸,可以从电荷密度 ρ {displaystyle rho } 、电流密度 J {displaystyle mathbf {J} } 、电极化强度 P {displaystyle mathbf {P} } 、磁化强度 M {displaystyle mathbf {M} } ,计算出电场 E {displaystyle mathbf {E} } 、电势移 D {displaystyle mathbf {D} } 、磁感应强度 B {displaystyle mathbf {B} } 、磁场强度 H {displaystyle mathbf {H} } 。很多物理学家借着麦克斯韦方程组来诠释为什么含时电场与含时磁场会互相生成。这诠释常常会被纳入电磁波形成的理论。但是,杰斐缅柯方程显示出,实际上并不是这样。杰斐缅柯阐明:

相关

  • 替加环素替加环素(英语:Tigecycline,亦称丁甘米诺环素与老虎霉素,研发代号为GAR-936)是一种静脉给药的广谱甘氨酰环肽类抗生素,属于第三代四环素类抗生素 。它主要针对耐药细菌如耐甲氧西
  • 化学式化学式(德语:chemische Formel/英语:chemical formula),是一种用来表示化学物质(也可能为元素或化合物)组成的式子。一般情况下,由元素符号、数字或其他符号组成;这些符号单一行列,被限
  • 抗心律不整药抗心律失常药(英语:Antiarrhythmic agents)是一类用于抑制心脏非正常节律(心律失常)的药物,这些情况例如心房颤动、心房扑动、心室性心搏过速以及心室颤动。很多人试图将此类药物
  • 克基拉岛克基拉岛(希腊语:Κέρκυρα,拉丁化:Kérkyra;古希腊语:Κέρκυρα/Κόρκυρα),英语称科孚岛(英语:Corfu),伊奥尼亚海岛屿,属希腊克基拉州。科孚岛面积580平方公里,是爱奥尼亚
  • 发炎反应炎症反应、炎性反应,俗称炎症,是指具有血管系统的活体组织对致炎因子及局部损伤所发生的防御性为主的反应,中心环节是血管反应,是生物组织受到外伤、出血或病原感染等刺激,激发的
  • 参考参考或指涉(英语:Reference)是两个对象之间的关系,此种关系由“指定”或“连接”之概念维系。在此关系中,前一个对象被称作“提及”(refer to)了后者;而后一个被提及的对象被称作前
  • 北布拉班特省北布拉班特省(荷兰语:Noord-Brabant)是荷兰的一个省,地处该国南部,南面与比利时交接,马斯河位其北面,东靠林堡省,西连西兰省。省会城市是斯海尔托亨博斯,最大城市是埃因霍温。(可以查
  • 专制专制是一个中国史学与政治学术语,最早始于清末的梁启超,他由日本引进这个译语。这个名词是意译,可以对应到几个欧洲单字,包括:这个名称随后在中国流行,通常用来描述古代中国传统君
  • 哈希姆家族哈希姆家族(阿拉伯语:هاشمي‎,转写:Hāšimī)是伊斯兰教先知穆罕默德的后裔繁衍而成的家族名称。原先附属于古莱什族部落中的一个氏族,成为巴努哈希姆(英语:Banu Hashim),近代曾
  • 背鳍鱼鳍是鱼类最明显的一个特征,是大部分鱼类用来游动的器官。在不同部位的鱼鳍有不同的作用,例如向上、向下、前进、后退或者保持身体平衡都需要动用或协调不同的鳍。鳍的功能也