杰斐缅柯方程

✍ dations ◷ 2025-11-09 01:50:13 #杰斐缅柯方程
在电磁学里,给予含时电荷密度分布和电流密度分布,可以使用杰斐缅柯方程(Jefimenko equation)来计算电场和磁场。这方程因其发现者物理学家欧雷格·杰斐缅柯(英语:Oleg D. Jefimenko)而命名。杰斐缅柯方程是麦克斯韦方程组对于这些电荷密度分布和电流密度分布的解答。在真空内,电场 E {displaystyle mathbf {E} } 和磁场 B {displaystyle mathbf {B} } 可以用杰斐缅柯方程表达为:其中, r {displaystyle mathbf {r} } 是场位置, r ′ {displaystyle mathbf {r} '} 是源位置, t {displaystyle t} 是现在时间, t r {displaystyle t_{r}} 是推迟时间, ϵ 0 {displaystyle epsilon _{0}} 是电常数, μ 0 {displaystyle mu _{0}} 是磁常数, ρ {displaystyle rho } 是电荷密度, ρ ˙   = d e f   ∂ ρ ∂ t {displaystyle {dot {rho }} {stackrel {def}{=}} {frac {partial rho }{partial t}}} 定义为电荷密度对于时间的偏导数, J {displaystyle mathbf {J} } 是电流密度, J ˙   = d e f   ∂ J ∂ t {displaystyle {dot {mathbf {J} }} {stackrel {def}{=}} {frac {partial mathbf {J} }{partial t}}} 定义为电流密度对于时间的偏导数, V ′ {displaystyle {mathcal {V}}'} 是体积分的空间, d 3 r ′ {displaystyle d^{3}mathbf {r} '} 是微小体元素。给予电荷密度分布 ρ ( r ′ , t ) {displaystyle rho (mathbf {r} ',,t)} 和电流密度分布 J ( r ′ , t ) {displaystyle mathbf {J} (mathbf {r} ',,t)} ,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 和推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 分别用方程定义为(参阅推迟势)推迟时间 t r {displaystyle t_{r}} 定义为现在时间 t {displaystyle t} 减去光波传播的时间:其中, c {displaystyle c} 是光速。在这两个非静态的推迟势方程内,源电荷密度和源电流密度都跟推迟时间 t r {displaystyle t_{r}} 有关,而不是跟时间无关。推迟势与电场 E {displaystyle mathbf {E} } 、磁场 B {displaystyle mathbf {B} } 的关系分别为设定 R {displaystyle {boldsymbol {mathfrak {R}}}} 为从源位置到场位置的分离矢量:场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 和时间 t {displaystyle t} 都是自变数。分离矢量 R {displaystyle {boldsymbol {mathfrak {R}}}} 和其大小 R {displaystyle {mathfrak {R}}} 都是应变数,跟场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 有关。推迟时间 t r = t − R / c {displaystyle t_{r}=t-{mathfrak {R}}/c} 也是应变数,跟时间 t {displaystyle t} 、分离距离 R {displaystyle {mathfrak {R}}} 有关。推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的全微分是注意到所以,源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的梯度是其中, ρ ˙ ( r ′ , t r ) {displaystyle {dot {rho }}(mathbf {r} ',,t_{r})} 定义为 ∂ ρ ( r ′ , t r ) ∂ t {displaystyle {frac {partial rho (mathbf {r} ',,t_{r})}{partial t}}} 。将这公式代入,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 对于时间的偏导数为:综合前面这两个公式,可以得到电场的杰斐缅柯方程。同样方法,可以得到磁场的杰斐缅柯方程。对于任意介质,将前面所述电场和磁场的方程加以延伸,可以从电荷密度 ρ {displaystyle rho } 、电流密度 J {displaystyle mathbf {J} } 、电极化强度 P {displaystyle mathbf {P} } 、磁化强度 M {displaystyle mathbf {M} } ,计算出电场 E {displaystyle mathbf {E} } 、电势移 D {displaystyle mathbf {D} } 、磁感应强度 B {displaystyle mathbf {B} } 、磁场强度 H {displaystyle mathbf {H} } 。很多物理学家借着麦克斯韦方程组来诠释为什么含时电场与含时磁场会互相生成。这诠释常常会被纳入电磁波形成的理论。但是,杰斐缅柯方程显示出,实际上并不是这样。杰斐缅柯阐明:

相关

  • 哺乳类哺乳动物是指脊椎动物亚门下哺乳纲(学名:Mammalia)的一类用肺呼吸空气的温血脊椎动物,因能通过乳腺分泌乳汁来给幼体哺乳而得名。按照《世界哺乳动物物种》(Mammal Species of th
  • 古雅典古雅典是一个古希腊城邦。城邦时代,位于阿提卡平原,科林斯湾和爱琴海的汇流之地。核心是高地卫城,依靠阿瑞斯山,后来成为在阿提卡平原发展而成的城邦。雅典以前是一个普通的城邦
  • 粪口路径粪口路径(也称为口腔-粪便路径或者口粪路径),是一种疾病传播(英语:Transmission (medicine))途径。具体指的是,病原体由一个宿主的粪便中被引入另一个宿主的口腔中的传播方式。在一
  • 雅高雅高酒店集团(Accor)是一家大型的法国跨国企业 ,在将近100个国家中经营,股票列入巴黎CAC40指数。 雅高旗下的雅高酒店是欧洲旅馆业的霸主,在全球拥有超过4000家旅馆,涵盖最豪华的
  • 安东尼·鲍森安东尼·“东尼”·詹姆士·鲍森,OC,OOnt,CH,FRS,FRSC(英语:Anthony 'Tony' James Pawson,1952年10月18日-2013年8月7日),英裔加拿大科学家,他的研究带来了对信号转导的革命性理解,这是细
  • 硬焊硬焊(英语:brazing)是一种焊接方式,将熔点低于欲连接工件之熔填料(钎料)加热至高于熔点,使之具有足够的流动性,利用毛细作用充分填充于两工件间(称为浸润),并待其凝固后将二者接合起来
  • 拘捕逮捕指以强制力拘束人身自由之强制处分,逮捕之主要目的为预防犯罪或是为进行侦查。逮捕,是指为了防止犯罪嫌疑人或者被告人实施妨碍刑事诉讼的行为,逃避侦查、起诉、审判或者发
  • 布料织物(英语:fabric),俗称布,是由纱线等带有纤维的材料制成的一种织品。可以由棉纱纺成棉布,也可以由人造纤维制成,或者以混合棉纱与人造纤维制成混纺布。布是很多日用品和工业产品的
  • 戈尔达板块戈尔达板块位于北加利福尼亚州以西的太平洋中,是法拉龙板块的北部残遗之一。在一些文献(例如USGS的地震危害计划)中,它也被简单地看作是与之相邻的胡安·德富卡板块的最南部分。
  • 沈一鸣沈一鸣(1957年3月30日-2020年1月2日),中华民国空军一级上将,籍贯江苏宜兴,生于台北士林,曾任参谋总长、国防部副部长、空军司令、国防部常务次长、副参谋总长、空军作战指挥部指挥