杰斐缅柯方程

✍ dations ◷ 2025-10-15 16:51:35 #杰斐缅柯方程
在电磁学里,给予含时电荷密度分布和电流密度分布,可以使用杰斐缅柯方程(Jefimenko equation)来计算电场和磁场。这方程因其发现者物理学家欧雷格·杰斐缅柯(英语:Oleg D. Jefimenko)而命名。杰斐缅柯方程是麦克斯韦方程组对于这些电荷密度分布和电流密度分布的解答。在真空内,电场 E {displaystyle mathbf {E} } 和磁场 B {displaystyle mathbf {B} } 可以用杰斐缅柯方程表达为:其中, r {displaystyle mathbf {r} } 是场位置, r ′ {displaystyle mathbf {r} '} 是源位置, t {displaystyle t} 是现在时间, t r {displaystyle t_{r}} 是推迟时间, ϵ 0 {displaystyle epsilon _{0}} 是电常数, μ 0 {displaystyle mu _{0}} 是磁常数, ρ {displaystyle rho } 是电荷密度, ρ ˙   = d e f   ∂ ρ ∂ t {displaystyle {dot {rho }} {stackrel {def}{=}} {frac {partial rho }{partial t}}} 定义为电荷密度对于时间的偏导数, J {displaystyle mathbf {J} } 是电流密度, J ˙   = d e f   ∂ J ∂ t {displaystyle {dot {mathbf {J} }} {stackrel {def}{=}} {frac {partial mathbf {J} }{partial t}}} 定义为电流密度对于时间的偏导数, V ′ {displaystyle {mathcal {V}}'} 是体积分的空间, d 3 r ′ {displaystyle d^{3}mathbf {r} '} 是微小体元素。给予电荷密度分布 ρ ( r ′ , t ) {displaystyle rho (mathbf {r} ',,t)} 和电流密度分布 J ( r ′ , t ) {displaystyle mathbf {J} (mathbf {r} ',,t)} ,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 和推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 分别用方程定义为(参阅推迟势)推迟时间 t r {displaystyle t_{r}} 定义为现在时间 t {displaystyle t} 减去光波传播的时间:其中, c {displaystyle c} 是光速。在这两个非静态的推迟势方程内,源电荷密度和源电流密度都跟推迟时间 t r {displaystyle t_{r}} 有关,而不是跟时间无关。推迟势与电场 E {displaystyle mathbf {E} } 、磁场 B {displaystyle mathbf {B} } 的关系分别为设定 R {displaystyle {boldsymbol {mathfrak {R}}}} 为从源位置到场位置的分离矢量:场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 和时间 t {displaystyle t} 都是自变数。分离矢量 R {displaystyle {boldsymbol {mathfrak {R}}}} 和其大小 R {displaystyle {mathfrak {R}}} 都是应变数,跟场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 有关。推迟时间 t r = t − R / c {displaystyle t_{r}=t-{mathfrak {R}}/c} 也是应变数,跟时间 t {displaystyle t} 、分离距离 R {displaystyle {mathfrak {R}}} 有关。推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的全微分是注意到所以,源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的梯度是其中, ρ ˙ ( r ′ , t r ) {displaystyle {dot {rho }}(mathbf {r} ',,t_{r})} 定义为 ∂ ρ ( r ′ , t r ) ∂ t {displaystyle {frac {partial rho (mathbf {r} ',,t_{r})}{partial t}}} 。将这公式代入,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 对于时间的偏导数为:综合前面这两个公式,可以得到电场的杰斐缅柯方程。同样方法,可以得到磁场的杰斐缅柯方程。对于任意介质,将前面所述电场和磁场的方程加以延伸,可以从电荷密度 ρ {displaystyle rho } 、电流密度 J {displaystyle mathbf {J} } 、电极化强度 P {displaystyle mathbf {P} } 、磁化强度 M {displaystyle mathbf {M} } ,计算出电场 E {displaystyle mathbf {E} } 、电势移 D {displaystyle mathbf {D} } 、磁感应强度 B {displaystyle mathbf {B} } 、磁场强度 H {displaystyle mathbf {H} } 。很多物理学家借着麦克斯韦方程组来诠释为什么含时电场与含时磁场会互相生成。这诠释常常会被纳入电磁波形成的理论。但是,杰斐缅柯方程显示出,实际上并不是这样。杰斐缅柯阐明:

相关

  • 和歌山县立医科大学和歌山县立医科大学(日语:わかやまけんりついかだいがく)是日本的公立大学。1945年创校。1948年设立大学部。大学略称为和医大。
  • 意大利-西罗曼语根据某些分类法,意大利-西罗曼语支(Italo-Western languages)是罗曼语族最大的一个分支。它又可进一步分为意大利-达尔马提亚语支与西罗曼语支,前者主要包括意大利语、西西里语
  • 真爱永存《真爱永存》(印地语:Mohabbatein;英语:Love Stories),也被译作“情字路上”,是2000年上映的一部经典印度爱情歌舞片。由Aditya Chopra编剧并执导。此片获得第46届印度电影大奖最佳
  • 亚甲基亚甲基(H2C:)是一个有机二价官能团,可分为:亚甲基常是碳链的组成单元,会增加化合物的亲脂性。
  • 天官天官可能是指:
  • 组团式城市群组团式城市群是商务印书馆于2003年出版的城市蓝皮书《中国城市发展报告》(2002-2003)中提出的关于描述中国大陆城市发展战略目标的宏观概念。组团式城市群的概念在学界使用并
  • 怀雅逊大学怀雅逊大学,是加拿大一所公立大学,校址位于加拿大最大城市安大略省多伦多市中心。校名是以早年安大略省早期教育家 Egerton Ryerson(1803年-1882年)而命名。Egerton Ryerson在18
  • 欧洲药物管理局欧洲药品管理局(英文:European Medicines Agency、EMA)是一个欧盟药品评估机构。1995年至2004年这一段时间内,名为欧洲药物检验局(European Agency for the Evaluation of Medic
  • 直升机场数量这个列表列出了世界各国和地区直升飞机场和直升飞机机队数量,此列表中定义的直升飞机场包括各国/地区的拥有硬质跑道、直升机停机坪或其他特殊专用于支持常规的直升机运行的
  • 神威天台山道场一贯道宝光建德神威天台山道场位于台湾高雄市六龟区,占地面积约300余公顷,是亚洲最大的一贯道道场。它隶属于一贯道各大组线中的宝光组线,于2008年建成。其主要由白阳圣殿、祖