康托尔定理

✍ dations ◷ 2024-11-05 16:29:27 #康托尔定理
康托尔定理指的是在ZFC集合论中,声称任何集合A的幂集(所有子集的集合)的势严格大于A的势。康托尔定理对于有限集合是明显的,但是令人惊奇的是它对于无限集合也成立。特别是,可数无限集合的幂集是不可数无限的。要展示康托尔定理的对于无限集合的有效性,只需要测试一下下面证明中无限集合。设f是从A到A的幂集的任何函数。必须证明这个f必定不是满射的。要如此,展示一个A的子集不在f的像中就足够了。这个子集是要证明B不在f的像中,假设B在f的像中。那么对于某个y ∈ A,我们有f(y) = B。现在考虑y ∈ B还是y ∉ {displaystyle notin } B。如果y ∈ B,则y ∈ f(y),但是通过B的定义,这蕴涵了y ∉ {displaystyle notin } B。在另一方面,如果y ∉ {displaystyle notin } B,则y ∉ {displaystyle notin } f(y)并因此y ∈ B。任何方式下都是矛盾。要掌握这个证明,让我们检查X是可数无限时的特殊情况。不失去一般性,我们采用自然数集合,X = N = {1, 2, 3,...}。假设N 双射于它的幂集P(N)。让我们看一个样例P(N):P ( N ) = { ∅ , { 1 , 2 } , { 1 , 2 , 3 } , { 4 } , { 1 , 5 } , { 3 , 4 , 6 } , { 2 , 4 , 6 , . . . } , . . . } {displaystyle P(mathbb {N} )={varnothing ,{1,2},{1,2,3},{4},{1,5},{3,4,6},{2,4,6,...},...}}P(N)包含无限的N的子集,比如所有偶数的集合{2, 4, 6,...},还有空集。现在让我们看一下P(N)的元素的样子,我们尝试给每个N的元素配对上每个P(N)的元素来证实这些无限集合是双射的。换句话说,我们将尝试对N的每个元素配对上来无限集合P(N)的元素,使得这两个集合中没有元素是未配对的。配对元素的尝试将是如下样子的:X { 1 ⟺ { 4 , 5 } 2 ⟺ { 1 , 2 , 3 } 3 ⟺ { 4 , 5 , 6 } 4 ⟺ { 1 , 3 , 5 } ⋮ ⋮ ⋮ } P ( N ) {displaystyle X{begin{Bmatrix}1&Longleftrightarrow &{4,5}\2&Longleftrightarrow &{1,2,3}\3&Longleftrightarrow &{4,5,6}\4&Longleftrightarrow &{1,3,5}\vdots &vdots &vdots end{Bmatrix}}P(mathbb {N} )}某些自然数被配对上不包含它们的子集。例如,在我们的例子中,数1被配对上子集{4, 5}。其他自然被配对上包含它们的子集。比如数2被配对上子集{1, 2, 3}。譬如说,1被配对给{4,5} ,但1不在{4,5}里。我们说,1不是自私的。同样地, 3 和4 也同样不是自私的。使用这个想法,让我们建造一个自然数的特殊集合。这个集合将提供我们所求索的矛盾。设D所有不自私的自然数的集合。通过定义,我们的幂集P(N)必定包含这个集合D作为元素。所以,D必定被配对上某个自然数。但是这导致了一个问题 -- 哪个自然数和D配对呢?它不能是D的成员,代表它不是自私的。因为D被特殊构造为只包含那些不自私的自然数。在另一方面,如果配对于D的自然数不包含在D中,则再次通过D的定义,它必定包含在D。这是矛盾因为这个自然数不能同时在D的内部和外部。所以,没有自然数可以配对于D,而我们的最初假定在N和P(N)之间有双射是有矛盾的。通过这个反证法我们证明了N的势和P(N)的势不能相等。我们还知道了P(N)的势不能小于N的势,因为根据定义P(N)包含所有单元素集合,而这些单元素集合形成在P(N)内的N的复制品。所以只剩下一个可能,就是P(N)的势严格大于N的势,这就证明了康托尔定理。康托尔在1891年发表的论文《Über eine elementare Frage der Mannigfaltigkeitslehre》中本质上给出了这个证明,实数不可数的对角论证法也首次在这里出现。在这个论文中给出的这个论证的版本使用的是在集合上的指示函数而不是集合子集。他证明了如果f是定义在X上的函数,它的值是在X上的二值函数,则二值函数G(x) = 1 − f(x)(x)不在f的值域中。罗素在《数学原理》(1903, section 348)中给出了一个非常类似的证明,在这里他证明了命题函数要比对象多。“假设所有对象和所有和它们相关的命题函数之间有一种对应,并令phi-x为x所对应的命题函数。则'非-phi-x(x)',也即"phi-x对于x不成立",是一个在这个对应中没有出现的命题函数;因为它在phi-x假的时候为真,在phi-x真的时候为假,因此它和任何一个x所对应的phi-x不同”。他在康托尔之后贡献了这个想法。恩斯特·策梅洛在他1908年发表的成为现代集合论基础的论文《Untersuchungen über die Grundlagen der Mengenlehre I》中有一个定理(他称之为康托尔定理)同于上面的论证形式。康托尔定理的一个推论请参见beth数。

相关

  • 心电图心电图(Electrocardiography、ECG 或者 EKG)是一种经胸腔的以时间为单位记录心脏的电生理活动,并通过皮肤上的电极捕捉并记录下来的诊疗技术。这是一种无创性的记录方式。Elect
  • 酵素酶(英语:Enzyme(/ˈɛnzaɪm/ )),是一类大分子生物催化剂。酶能加快化学反应的速度(即具有催化作用)。由酶催化的反应中,反应物称为底物,生成的物质称为产物。几乎所有细胞内的代谢过
  • 食道食道(Esophagus),亦称食管,人和动物消化管道的一部分,上面连接咽,下面连通胃,紧贴脊柱的腹侧,具有输送食物的功能。食道是一条由肌肉组成的中空通道,在最尾端与胃相接的地方有一个括
  • 芽生噬菌体科芽生噬菌体属 Plasmavirus芽生噬菌体科(拉丁语学名:Plasmaviridae)是一种拥有环状、双链脱氧核糖核酸基因的噬菌体,它只有一个属:芽生噬菌体属。芽生噬菌体科噬菌体没有糖衣,其脱
  • 反磁性抗磁性(Diamagnetism,亦作反磁性)是一些类别的物质,当处在外加磁场中,会对磁场产生的微弱斥力的一种磁性现象。抗磁性的成因,是当物质处在外加磁场中,外加磁场使得物质电子轨道(更精
  • 女儿女儿,是家庭中的成员,由父母所生的子女中的女性孩子,当然女儿也可能是继女,即是配偶与前妻、前夫或其他人所生的女儿。一些父权社会中,女儿(尤其是已婚的)没有继承权,在出嫁后会被视
  • 楚雄市楚雄市(彝语:ꀒꇖꏃ)是位于中华人民共和国云南省中部的一座县级市,是楚雄彝族自治州的州府所在地。政府驻鹿城镇,位于云贵高原中部,元江水系与金沙江水系的分水岭地带,地跨东经100
  • 喹啉喹啉,也叫做苯并吡啶、氮杂萘,是一个杂环芳香性有机化合物。喹啉是一个具有强烈臭味的无色吸湿性液体,分子式是C9H7N。将喹啉暴露在光下,会慢慢变成淡黄色,进一步变成棕色。喹啉
  • 布兰登·艾克布兰登·艾克(英语:Brendan Eich,1961年7月4日-),美国程序技术专家与企业家,JavaScript主要创造者与架构师,曾任Mozilla公司的首席技术官,并曾短暂担任首席执行官。布兰登·艾克生于
  • 阿斯匹灵中毒阿司匹林中毒,又被称作水杨酸中毒, 指的是急性或慢性的水杨酸中毒,大多是阿司匹林。 最常见的症状是耳鸣、恶心、腹痛以及代偿酸中毒的呼吸急促。 这些症状在早期可能并不明显,