康托尔定理

✍ dations ◷ 2024-12-22 18:07:08 #康托尔定理
康托尔定理指的是在ZFC集合论中,声称任何集合A的幂集(所有子集的集合)的势严格大于A的势。康托尔定理对于有限集合是明显的,但是令人惊奇的是它对于无限集合也成立。特别是,可数无限集合的幂集是不可数无限的。要展示康托尔定理的对于无限集合的有效性,只需要测试一下下面证明中无限集合。设f是从A到A的幂集的任何函数。必须证明这个f必定不是满射的。要如此,展示一个A的子集不在f的像中就足够了。这个子集是要证明B不在f的像中,假设B在f的像中。那么对于某个y ∈ A,我们有f(y) = B。现在考虑y ∈ B还是y ∉ {displaystyle notin } B。如果y ∈ B,则y ∈ f(y),但是通过B的定义,这蕴涵了y ∉ {displaystyle notin } B。在另一方面,如果y ∉ {displaystyle notin } B,则y ∉ {displaystyle notin } f(y)并因此y ∈ B。任何方式下都是矛盾。要掌握这个证明,让我们检查X是可数无限时的特殊情况。不失去一般性,我们采用自然数集合,X = N = {1, 2, 3,...}。假设N 双射于它的幂集P(N)。让我们看一个样例P(N):P ( N ) = { ∅ , { 1 , 2 } , { 1 , 2 , 3 } , { 4 } , { 1 , 5 } , { 3 , 4 , 6 } , { 2 , 4 , 6 , . . . } , . . . } {displaystyle P(mathbb {N} )={varnothing ,{1,2},{1,2,3},{4},{1,5},{3,4,6},{2,4,6,...},...}}P(N)包含无限的N的子集,比如所有偶数的集合{2, 4, 6,...},还有空集。现在让我们看一下P(N)的元素的样子,我们尝试给每个N的元素配对上每个P(N)的元素来证实这些无限集合是双射的。换句话说,我们将尝试对N的每个元素配对上来无限集合P(N)的元素,使得这两个集合中没有元素是未配对的。配对元素的尝试将是如下样子的:X { 1 ⟺ { 4 , 5 } 2 ⟺ { 1 , 2 , 3 } 3 ⟺ { 4 , 5 , 6 } 4 ⟺ { 1 , 3 , 5 } ⋮ ⋮ ⋮ } P ( N ) {displaystyle X{begin{Bmatrix}1&Longleftrightarrow &{4,5}\2&Longleftrightarrow &{1,2,3}\3&Longleftrightarrow &{4,5,6}\4&Longleftrightarrow &{1,3,5}\vdots &vdots &vdots end{Bmatrix}}P(mathbb {N} )}某些自然数被配对上不包含它们的子集。例如,在我们的例子中,数1被配对上子集{4, 5}。其他自然被配对上包含它们的子集。比如数2被配对上子集{1, 2, 3}。譬如说,1被配对给{4,5} ,但1不在{4,5}里。我们说,1不是自私的。同样地, 3 和4 也同样不是自私的。使用这个想法,让我们建造一个自然数的特殊集合。这个集合将提供我们所求索的矛盾。设D所有不自私的自然数的集合。通过定义,我们的幂集P(N)必定包含这个集合D作为元素。所以,D必定被配对上某个自然数。但是这导致了一个问题 -- 哪个自然数和D配对呢?它不能是D的成员,代表它不是自私的。因为D被特殊构造为只包含那些不自私的自然数。在另一方面,如果配对于D的自然数不包含在D中,则再次通过D的定义,它必定包含在D。这是矛盾因为这个自然数不能同时在D的内部和外部。所以,没有自然数可以配对于D,而我们的最初假定在N和P(N)之间有双射是有矛盾的。通过这个反证法我们证明了N的势和P(N)的势不能相等。我们还知道了P(N)的势不能小于N的势,因为根据定义P(N)包含所有单元素集合,而这些单元素集合形成在P(N)内的N的复制品。所以只剩下一个可能,就是P(N)的势严格大于N的势,这就证明了康托尔定理。康托尔在1891年发表的论文《Über eine elementare Frage der Mannigfaltigkeitslehre》中本质上给出了这个证明,实数不可数的对角论证法也首次在这里出现。在这个论文中给出的这个论证的版本使用的是在集合上的指示函数而不是集合子集。他证明了如果f是定义在X上的函数,它的值是在X上的二值函数,则二值函数G(x) = 1 − f(x)(x)不在f的值域中。罗素在《数学原理》(1903, section 348)中给出了一个非常类似的证明,在这里他证明了命题函数要比对象多。“假设所有对象和所有和它们相关的命题函数之间有一种对应,并令phi-x为x所对应的命题函数。则'非-phi-x(x)',也即"phi-x对于x不成立",是一个在这个对应中没有出现的命题函数;因为它在phi-x假的时候为真,在phi-x真的时候为假,因此它和任何一个x所对应的phi-x不同”。他在康托尔之后贡献了这个想法。恩斯特·策梅洛在他1908年发表的成为现代集合论基础的论文《Untersuchungen über die Grundlagen der Mengenlehre I》中有一个定理(他称之为康托尔定理)同于上面的论证形式。康托尔定理的一个推论请参见beth数。

相关

  • 根瘤菌目橙单胞菌科 Aurantimonadaceae 巴通体科 Bartonellaceae 拜叶林克氏菌科 Beijerinckiaceae 慢生根瘤菌科 Bradyrhizobiaceae 布鲁氏菌科 Brucellaceae 生丝微菌科 Hyphomicr
  • DiseasesDB疾病数据库(Diseases Database)是一个免费提供关于医学症状、症候或是药物资讯的网站。
  • 盘嵴亚界古虫界(学名:Excavata)是单细胞生物的一个主要超级群组,属于真核生物域,由汤玛斯·卡弗利尔-史密斯于2002年引入的一个新的支序亲缘学分类。古虫界包含了许多自由生存或共生的原
  • 种小名种加词(英文:specific epithet),又称种小名,指双名法中物种名的第二部分,另一部分为属名。在植物学名命名法中,“种名”指的是物种的完整学名,而在动物学名命名法中,“种名”既可以指
  • 腓骨腓骨(拉丁语:Fibula)是人和脊椎动物(四足类)小腿上的两块长骨之一,位于小腿外侧,较细;某些动物(如蛙和蟾蜍等)腓骨与其内侧的胫骨融合成胫腓骨。腓骨比胫骨细;腓骨上端称作腓骨小头,可以
  • 后心肌梗塞症候群后心肌梗塞症候群(postmyocardial infarction syndrome),又称卓斯勒症候群(Dressler syndrome),是描述在心肌细胞或心包膜在受损后产生的后天性(英语:acquired)心包炎。常见症状包含
  • 希波克拉底誓言希波克拉底誓词(希腊语:Όρκος του Ιπποκράτη,英语:Hippocratic Oath),俗称医师誓词,是西方医生传统上行医前的誓言,希波克拉底乃古希腊医者,被誉为西方“医学之父”
  • 呼吸细支气管小支气管是空气由鼻或口到肺的肺气泡之间的通道,而分支下层不再包含软骨或腺体。小支气管是支气管的分支。小支气管具有微丝血管。Template:Lower respiratory system anatom
  • 二氧化硅无色无定形固体(玻璃体)2.533 g/cm3(β-石英,600 ℃时)2.265 g/cm3(鳞石英)2.334 g/cm3(方石英)2.196 g/cm3(玻璃体)867 ℃(β-石英转化为鳞石英)1470 ℃(鳞石英转化为方石英)1722 ℃(方石英
  • 祖鲁语祖鲁语(祖鲁语:isiZulu)是祖鲁人所使用的一种语言。目前大约有九百万人使用,其中95%居住在南非共和国境内。祖鲁语是24%的南非人的母语,也是南非最大的语言。大约50%的南非人可以