首页 >
康托尔定理
✍ dations ◷ 2025-11-26 18:33:26 #康托尔定理
康托尔定理指的是在ZFC集合论中,声称任何集合A的幂集(所有子集的集合)的势严格大于A的势。康托尔定理对于有限集合是明显的,但是令人惊奇的是它对于无限集合也成立。特别是,可数无限集合的幂集是不可数无限的。要展示康托尔定理的对于无限集合的有效性,只需要测试一下下面证明中无限集合。设f是从A到A的幂集的任何函数。必须证明这个f必定不是满射的。要如此,展示一个A的子集不在f的像中就足够了。这个子集是要证明B不在f的像中,假设B在f的像中。那么对于某个y ∈ A,我们有f(y) = B。现在考虑y ∈ B还是y
∉
{displaystyle notin }
B。如果y ∈ B,则y ∈ f(y),但是通过B的定义,这蕴涵了y
∉
{displaystyle notin }
B。在另一方面,如果y
∉
{displaystyle notin }
B,则y
∉
{displaystyle notin }
f(y)并因此y ∈ B。任何方式下都是矛盾。要掌握这个证明,让我们检查X是可数无限时的特殊情况。不失去一般性,我们采用自然数集合,X = N = {1, 2, 3,...}。假设N 双射于它的幂集P(N)。让我们看一个样例P(N):P
(
N
)
=
{
∅
,
{
1
,
2
}
,
{
1
,
2
,
3
}
,
{
4
}
,
{
1
,
5
}
,
{
3
,
4
,
6
}
,
{
2
,
4
,
6
,
.
.
.
}
,
.
.
.
}
{displaystyle P(mathbb {N} )={varnothing ,{1,2},{1,2,3},{4},{1,5},{3,4,6},{2,4,6,...},...}}P(N)包含无限的N的子集,比如所有偶数的集合{2, 4, 6,...},还有空集。现在让我们看一下P(N)的元素的样子,我们尝试给每个N的元素配对上每个P(N)的元素来证实这些无限集合是双射的。换句话说,我们将尝试对N的每个元素配对上来无限集合P(N)的元素,使得这两个集合中没有元素是未配对的。配对元素的尝试将是如下样子的:X
{
1
⟺
{
4
,
5
}
2
⟺
{
1
,
2
,
3
}
3
⟺
{
4
,
5
,
6
}
4
⟺
{
1
,
3
,
5
}
⋮
⋮
⋮
}
P
(
N
)
{displaystyle X{begin{Bmatrix}1&Longleftrightarrow &{4,5}\2&Longleftrightarrow &{1,2,3}\3&Longleftrightarrow &{4,5,6}\4&Longleftrightarrow &{1,3,5}\vdots &vdots &vdots end{Bmatrix}}P(mathbb {N} )}某些自然数被配对上不包含它们的子集。例如,在我们的例子中,数1被配对上子集{4, 5}。其他自然被配对上包含它们的子集。比如数2被配对上子集{1, 2, 3}。譬如说,1被配对给{4,5} ,但1不在{4,5}里。我们说,1不是自私的。同样地, 3 和4 也同样不是自私的。使用这个想法,让我们建造一个自然数的特殊集合。这个集合将提供我们所求索的矛盾。设D所有不自私的自然数的集合。通过定义,我们的幂集P(N)必定包含这个集合D作为元素。所以,D必定被配对上某个自然数。但是这导致了一个问题 -- 哪个自然数和D配对呢?它不能是D的成员,代表它不是自私的。因为D被特殊构造为只包含那些不自私的自然数。在另一方面,如果配对于D的自然数不包含在D中,则再次通过D的定义,它必定包含在D。这是矛盾因为这个自然数不能同时在D的内部和外部。所以,没有自然数可以配对于D,而我们的最初假定在N和P(N)之间有双射是有矛盾的。通过这个反证法我们证明了N的势和P(N)的势不能相等。我们还知道了P(N)的势不能小于N的势,因为根据定义P(N)包含所有单元素集合,而这些单元素集合形成在P(N)内的N的复制品。所以只剩下一个可能,就是P(N)的势严格大于N的势,这就证明了康托尔定理。康托尔在1891年发表的论文《Über eine elementare Frage der Mannigfaltigkeitslehre》中本质上给出了这个证明,实数不可数的对角论证法也首次在这里出现。在这个论文中给出的这个论证的版本使用的是在集合上的指示函数而不是集合子集。他证明了如果f是定义在X上的函数,它的值是在X上的二值函数,则二值函数G(x) = 1 − f(x)(x)不在f的值域中。罗素在《数学原理》(1903, section 348)中给出了一个非常类似的证明,在这里他证明了命题函数要比对象多。“假设所有对象和所有和它们相关的命题函数之间有一种对应,并令phi-x为x所对应的命题函数。则'非-phi-x(x)',也即"phi-x对于x不成立",是一个在这个对应中没有出现的命题函数;因为它在phi-x假的时候为真,在phi-x真的时候为假,因此它和任何一个x所对应的phi-x不同”。他在康托尔之后贡献了这个想法。恩斯特·策梅洛在他1908年发表的成为现代集合论基础的论文《Untersuchungen über die Grundlagen der Mengenlehre I》中有一个定理(他称之为康托尔定理)同于上面的论证形式。康托尔定理的一个推论请参见beth数。
相关
- Nitrospirae硝化螺旋菌门(Nitrospira)是一类革兰氏阴性细菌。其中的硝化螺旋菌属(Nitrospira)作为硝化细菌(Nitrifier),可将亚硝酸盐氧化成硝酸盐。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药
- 金属蛋白金属蛋白(英语:Metalloprotein)是一类含有配位结合的金属离子作为辅因子的结合蛋白质。所有蛋白质中有大量是属于这一类。据估计,所有蛋白质中有大约一半含有金属。据另一个估计
- 萧邦弗雷德里克·弗朗索瓦·肖邦(法语:Frédéric François Chopin,1810年3月1日-1849年10月17日),原名弗里德里克·弗朗齐歇克·肖邦(波兰语:Fryderyk Franciszek Chopin,有时拼作Szope
- 微小纺锤形噬菌体科微小纺锤形噬菌体科(Fuselloviridae)是双链DNA病毒中的一个科,该类病毒外观呈纺锤状,主要感染于古细菌。下有一属:代表种:
- 分权权力分立(Separation of powers)是一个政治学说,其主张政府的行政、立法与司法职权范围要分明,以免滥用权力。此学说起源可追溯至古希腊,而其后被英国与法国的哲学家进一步发展。
- 联合国日联合国日,于1948年由联合国大会宣布设立,以纪念于联合国宪章生效三周年。联合国日定为每年10月24日。联合国日的设立是意图让人们记住联合国的目标和成就。联合国日是10月20日
- 地中海贫血地中海贫血(Thalassemias),又称珠蛋白生成障碍性贫血,海洋性贫血症,简称地贫,是遗传性血液疾病,会造成血红蛋白合成障碍,其症状可依不同分型而有所不同,程度可能从无症状到严重。通常
- 磺胺硫脲磺胺硫脲是一种磺胺类药物,其INN名称是“Sulfathiourea”。该药物可用于治疗由细菌感染引发的疾病。该药物在血液中的半衰期尚不明确。该药物分子是经将硫脲中的一个氢原子取
- TdT末端脱氧核苷酸转移酶(Terminal deoxynucleotidyl transferase、TdT、末端转移酶),是一种特殊的DNA聚合酶,显示出未成熟的、"前B","前T淋巴细胞"和"急性淋巴性白血病/淋巴瘤细胞"
- 维谷斯基利维·维果斯基(俄语:Лев Семёнович Выготский,1896年11月17日-1934年6月11日,其姓氏台湾译为维高斯基,其他的翻译还包括维果茨基、维谷斯基、维戈茨基等),苏
