康托尔定理

✍ dations ◷ 2025-07-01 11:07:04 #康托尔定理
康托尔定理指的是在ZFC集合论中,声称任何集合A的幂集(所有子集的集合)的势严格大于A的势。康托尔定理对于有限集合是明显的,但是令人惊奇的是它对于无限集合也成立。特别是,可数无限集合的幂集是不可数无限的。要展示康托尔定理的对于无限集合的有效性,只需要测试一下下面证明中无限集合。设f是从A到A的幂集的任何函数。必须证明这个f必定不是满射的。要如此,展示一个A的子集不在f的像中就足够了。这个子集是要证明B不在f的像中,假设B在f的像中。那么对于某个y ∈ A,我们有f(y) = B。现在考虑y ∈ B还是y ∉ {displaystyle notin } B。如果y ∈ B,则y ∈ f(y),但是通过B的定义,这蕴涵了y ∉ {displaystyle notin } B。在另一方面,如果y ∉ {displaystyle notin } B,则y ∉ {displaystyle notin } f(y)并因此y ∈ B。任何方式下都是矛盾。要掌握这个证明,让我们检查X是可数无限时的特殊情况。不失去一般性,我们采用自然数集合,X = N = {1, 2, 3,...}。假设N 双射于它的幂集P(N)。让我们看一个样例P(N):P ( N ) = { ∅ , { 1 , 2 } , { 1 , 2 , 3 } , { 4 } , { 1 , 5 } , { 3 , 4 , 6 } , { 2 , 4 , 6 , . . . } , . . . } {displaystyle P(mathbb {N} )={varnothing ,{1,2},{1,2,3},{4},{1,5},{3,4,6},{2,4,6,...},...}}P(N)包含无限的N的子集,比如所有偶数的集合{2, 4, 6,...},还有空集。现在让我们看一下P(N)的元素的样子,我们尝试给每个N的元素配对上每个P(N)的元素来证实这些无限集合是双射的。换句话说,我们将尝试对N的每个元素配对上来无限集合P(N)的元素,使得这两个集合中没有元素是未配对的。配对元素的尝试将是如下样子的:X { 1 ⟺ { 4 , 5 } 2 ⟺ { 1 , 2 , 3 } 3 ⟺ { 4 , 5 , 6 } 4 ⟺ { 1 , 3 , 5 } ⋮ ⋮ ⋮ } P ( N ) {displaystyle X{begin{Bmatrix}1&Longleftrightarrow &{4,5}\2&Longleftrightarrow &{1,2,3}\3&Longleftrightarrow &{4,5,6}\4&Longleftrightarrow &{1,3,5}\vdots &vdots &vdots end{Bmatrix}}P(mathbb {N} )}某些自然数被配对上不包含它们的子集。例如,在我们的例子中,数1被配对上子集{4, 5}。其他自然被配对上包含它们的子集。比如数2被配对上子集{1, 2, 3}。譬如说,1被配对给{4,5} ,但1不在{4,5}里。我们说,1不是自私的。同样地, 3 和4 也同样不是自私的。使用这个想法,让我们建造一个自然数的特殊集合。这个集合将提供我们所求索的矛盾。设D所有不自私的自然数的集合。通过定义,我们的幂集P(N)必定包含这个集合D作为元素。所以,D必定被配对上某个自然数。但是这导致了一个问题 -- 哪个自然数和D配对呢?它不能是D的成员,代表它不是自私的。因为D被特殊构造为只包含那些不自私的自然数。在另一方面,如果配对于D的自然数不包含在D中,则再次通过D的定义,它必定包含在D。这是矛盾因为这个自然数不能同时在D的内部和外部。所以,没有自然数可以配对于D,而我们的最初假定在N和P(N)之间有双射是有矛盾的。通过这个反证法我们证明了N的势和P(N)的势不能相等。我们还知道了P(N)的势不能小于N的势,因为根据定义P(N)包含所有单元素集合,而这些单元素集合形成在P(N)内的N的复制品。所以只剩下一个可能,就是P(N)的势严格大于N的势,这就证明了康托尔定理。康托尔在1891年发表的论文《Über eine elementare Frage der Mannigfaltigkeitslehre》中本质上给出了这个证明,实数不可数的对角论证法也首次在这里出现。在这个论文中给出的这个论证的版本使用的是在集合上的指示函数而不是集合子集。他证明了如果f是定义在X上的函数,它的值是在X上的二值函数,则二值函数G(x) = 1 − f(x)(x)不在f的值域中。罗素在《数学原理》(1903, section 348)中给出了一个非常类似的证明,在这里他证明了命题函数要比对象多。“假设所有对象和所有和它们相关的命题函数之间有一种对应,并令phi-x为x所对应的命题函数。则'非-phi-x(x)',也即"phi-x对于x不成立",是一个在这个对应中没有出现的命题函数;因为它在phi-x假的时候为真,在phi-x真的时候为假,因此它和任何一个x所对应的phi-x不同”。他在康托尔之后贡献了这个想法。恩斯特·策梅洛在他1908年发表的成为现代集合论基础的论文《Untersuchungen über die Grundlagen der Mengenlehre I》中有一个定理(他称之为康托尔定理)同于上面的论证形式。康托尔定理的一个推论请参见beth数。

相关

  • I急性风湿热(I00-I09)高血压病(I10-I15)缺血性心脏病(I20-I25)肺原性心脏病和肺循环疾病(I26-I28)其他类型的心脏病(I30-I52)脑血管病(I60-I69)动脉、小动脉和毛细血管疾病(I70-I79)静脉、
  • 早产早产(preterm birth、premature birth),主要是指胎儿在早于37周之前分娩的过程,其婴儿被称为早产儿(preemies, premmies)。早产的症状包含每次子宫收缩间隔少于10分钟,或液体从阴道
  • 酰胺醇类抗生素酰胺醇类抗生素是一种抗生素。常见的有得氯霉素,甲砜霉素、氟苯尼考等。临床常用的品种为甲砜霉素和氟苯尼考。制剂有甲砜霉素片、氟苯尼考注射液、氟苯尼考可溶性粉等。抗菌
  • 心房颤动心房颤动(英语:Atrial fibrillation,简称:Af 或 A-fib),又称为心房微颤、房颤、心房纤维性颤动、心房纤颤、房性纤颤等,是心脏不正常节律/心律不整的一种,特色是心脏快速而不规则的
  • British Medical Journal英国医学期刊(British Medical Journal,简称 BMJ),是一份同行评审性质的综合医学期刊,也是最古老的医学期刊之一。由BMJ出版集团公司(BMJ Publishing Group Ltd)(属于英国医学协会(Br
  • 处方处方(符号“℞”),是医师开给病人的医疗文书,是药剂师或司药员向病人发放药品的重要依据,内容一般包括患者姓名、年龄、联系方式、所用药品名称、用量(剂量)等。处方所载内容一般会
  • 镍镉电池镍镉电池(Nickel-cadmium battery,通常简称NiCd,读作“nye-cad”)是一种流行的蓄电池。这种电池以氢氧化镍(NiOH)及金属镉(Cd)作为产生电能的化学品。对比其他种类的蓄电池,镍镉电池
  • 神经成像神经成像(英语:Neuroimaging)泛指能够直接或间接对神经系统(主要是脑)的功能,结构,和药理学特性进行成像的技术。神经成像是医学,神经科学,和心理学较新的一个领域。根据成像的模式,神
  • 科尔萨科夫综合症科尔萨科夫氏症候群(Korsakoff's syndrome),又称健忘综合征,为一种大脑缺乏硫胺(维生素B1)而引起的精神障碍。其疾病由俄国神经学家谢尔盖·科尔萨科夫最先发现而命名。科尔萨科夫
  • 迎宾馆坐标:35°40′48″N 139°43′43″E / 35.68000°N 139.72861°E / 35.68000; 139.72861迎宾馆赤坂离宫(日语:迎賓館赤坂離宮/げいひんかんあかさかりきゅう Geihinkan Akasaka