椭球体

✍ dations ◷ 2025-07-06 08:04:30 #椭球体
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中 + θ ′ {displaystyle {color {white}+}!!!theta {color {white}'},!} 是天顶角, + φ − {displaystyle {color {white}+}!!!varphi {color {white}!!!-},!} 是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中 β {displaystyle beta ,!} 是一点的参数纬度, + λ ′ {displaystyle {color {white}+}!!!lambda {color {white}'},!} 是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中 p ≈ 1.6075 {displaystyle papprox 1.6075,} 。这样相对误差最多为 1.061 {displaystyle 1.061,} %(Knud Thomsen公式); p = 8 5 = 1.6 {displaystyle p={frac {8}{5}}=1.6,} 的值对于接近于球的椭球较为适宜,其相对误差最多为 1.178 {displaystyle 1.178,} %(David W. Cantrell公式)。对于 a = b {displaystyle a=b,} 的情况,有一个精确的公式:c {displaystyle c,} 比 a {displaystyle a,} 和 b {displaystyle b,} 都小很多时,表面积近似等于 2 π a b . {displaystyle 2pi ab.,!} 。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径 d 2 {displaystyle {d_{2}}} 与 d 1 {displaystyle {d_{1}}} 可表示为d 1 , 2 2 = 8 ( 1 − z c 2 ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) ∑ i = 1 3 cos 2 ⁡ p i r i 2 ± ( ∑ i = 1 3 cos 2 ⁡ p i r i 2 ) 2 − 4 ( ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) / r 1 2 r 2 2 r 3 2 {displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中 ρ {displaystyle rho ,!} 是密度。均匀密度的椭球的转动惯量为:其中 I x x {displaystyle I_{mathrm {xx} },!} 、 I y y {displaystyle I_{mathrm {yy} },!} 和 I z z {displaystyle I_{mathrm {zz} },!} 分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。

相关

  • 安乐死安乐死(英语:Euthanasia,源自于希腊语:εὐθανασία,“好的死亡”;εὖ为“好的”,θάνατος为“死亡”,此名称与实际作法不断地受到争议)是一种给予患有不治之症的人以无
  • 精神活性物质精神药物(英语:psychoactive drug),又称精神药品(psychopharmaceutical,或psychotropic)。有些精神药品具有医疗和科学价值。一种化学物质的概称,这些物质能够穿越血脑屏障,直接作用
  • 黑龙江黑龙江(满语:ᠰᠠᡥᠠᠯᡳᠶᠠᠨᡠᠯᠠ,穆麟德:sahaliyan ula,太清:sahaliyan ula,蒙古语:Амар мөрөн),俄罗斯称之为阿穆尔河(俄语:Река Амур,罗马化:Reka Amur,IPA:.mw-pa
  • 大卫·休谟大卫·休谟(英语:David Hume,1711年5月7日-1776年8月25日)是苏格兰的哲学家、经济学家和历史学家,他是苏格兰启蒙运动以及西方哲学历史中最重要的人物之一。虽然现代对于休谟的著
  • 亨廷顿舞蹈病亨廷顿舞蹈症(Huntington's Disease, HD)是一种遗传性疾病,会导致脑细胞死亡。早期症状往往是情绪或智力方面的轻微问题,接着是不协调和不稳定的步伐(英语:Gait)。随着疾病的进展,身
  • 话语卷轴话语卷轴(speech scroll),又称语音卷轴、飘旗(banderole)或经符(phylactery),是艺术史上一种通常用来表示人物语音的绘画形式。有时候也用来表示其他种类的音响,如歌曲。话语卷轴曾出
  • 科尔多凡语族科尔多凡语族是尼日尔-刚果语系的三个分支之一,主要语言人口位于东非苏丹中部科尔多凡地区南部的努巴山区内,是一个比较疏离的一个支系。1963年,约瑟·格林伯格(Joseph Greenbe
  • 助动词助动词(英语:auxiliary verb、英文简称:.mw-parser-output .smallcaps{font-variant:small-caps}.mw-parser-output .nocaps{text-transform:lowercase} aux)是一种可以改变主要
  • 字谜谜语,指字面无法解释的语句,暗射事物或文字等供人猜测的隐语,需要推敲及猜测其答案。谜语又称为叟辞、隐语等,最早见于刘勰《文心雕龙‧谐隐》。周密的《齐东野语》说:“古之所谓
  • 马里奥·卡佩奇马里奥·卡佩奇(英语:Mario Capecchi,1937年10月6日-),生于意大利的美国分子遗传学家,也是2007年诺贝尔生理学或医学奖得主之一。马里奥·卡佩奇目前是美国犹他大学医学院人类遗传