首页 >
椭球体
✍ dations ◷ 2025-04-25 13:13:07 #椭球体
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中
+
θ
′
{displaystyle {color {white}+}!!!theta {color {white}'},!}
是天顶角,
+
φ
−
{displaystyle {color {white}+}!!!varphi {color {white}!!!-},!}
是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中
β
{displaystyle beta ,!}
是一点的参数纬度,
+
λ
′
{displaystyle {color {white}+}!!!lambda {color {white}'},!}
是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中
p
≈
1.6075
{displaystyle papprox 1.6075,}
。这样相对误差最多为
1.061
{displaystyle 1.061,}
%(Knud Thomsen公式);
p
=
8
5
=
1.6
{displaystyle p={frac {8}{5}}=1.6,}
的值对于接近于球的椭球较为适宜,其相对误差最多为
1.178
{displaystyle 1.178,}
%(David W. Cantrell公式)。对于
a
=
b
{displaystyle a=b,}
的情况,有一个精确的公式:c
{displaystyle c,}
比
a
{displaystyle a,}
和
b
{displaystyle b,}
都小很多时,表面积近似等于
2
π
a
b
.
{displaystyle 2pi ab.,!}
。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径
d
2
{displaystyle {d_{2}}}
与
d
1
{displaystyle {d_{1}}}
可表示为d
1
,
2
2
=
8
(
1
−
z
c
2
∑
i
=
1
3
r
i
2
sin
2
p
i
)
∑
i
=
1
3
cos
2
p
i
r
i
2
±
(
∑
i
=
1
3
cos
2
p
i
r
i
2
)
2
−
4
(
∑
i
=
1
3
r
i
2
sin
2
p
i
)
/
r
1
2
r
2
2
r
3
2
{displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中
ρ
{displaystyle rho ,!}
是密度。均匀密度的椭球的转动惯量为:其中
I
x
x
{displaystyle I_{mathrm {xx} },!}
、
I
y
y
{displaystyle I_{mathrm {yy} },!}
和
I
z
z
{displaystyle I_{mathrm {zz} },!}
分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。
相关
- 细菌萜醇细菌萜醇也称为“细菌异萜醇”,是一种由乳酸杆菌合成的、具有11个萜醇基的脂质。 这种分布于细菌中的聚萜醇是细胞膜多糖的O抗原侧链、细胞壁胞壁质的多糖骨架以及其它荚膜多
- 索福克勒斯索福克勒斯(古希腊语:Σοφοκλῆς,前496年/前497年-前405年/前406年),古希腊剧作家,古希腊悲剧的代表人物之一,和埃斯库罗斯、欧里庇得斯并称古希腊三大悲剧诗人,他的第一部作品
- 循证医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学实证医学(英语:Evidence-based medicine
- 圆锥角膜圆锥角膜(英语:Keratoconus),可简称为 KC、KCN、KTCN,是一种眼疾患,角膜会变得愈来越薄。圆锥角膜可能引起视野模糊(英语:Blurred vision)、复视、近视、散光及畏光。通常患者的两眼
- 高低重音高低重音或音高重音(英语:Pitch accent),是一种重音。在高低重音语言里,一个词里的每个音节的音调取决于该音节在词里出现的位置。而声调语言中,每个音节有自己固定的声调,它的声调
- 化粪池化粪池,是为一些没有连接公共排污系统的楼宇而设的小型污水处理系统,包括一个或多个水池及化粪系统。污水在进入水池时,细菌会对污物进行无氧分解,并会使固体废物体积减少,再经过
- 运动伤害运动损伤又称运动创伤或运动伤害(英语:Sports injuries),指在体育运动或体能锻炼过程中发生的创伤。例如在美国,据估计有三千万青少年参与过某种形式的有组织运动,其中每年又有三
- 高能物理学粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一个物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在
- 药物前体前体药物(英语:prodrug),也称前药、药物前体、前驱药物等,是指经过生物体内转化后才具有药理作用的化合物。前体药物本身没有生物活性或活性很低,经过体内代谢后变为有活性的物质,
- 企业号企业号航天飞机(Space Shuttle Enterprise,NASA内部编号OV-101),又译为进取号,是NASA打造的第一架航天飞机。“企业号航天飞机”实际上只是一个的航天的测试平台,没有引擎等相关部