椭球体

✍ dations ◷ 2025-08-16 15:44:26 #椭球体
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中 + θ ′ {displaystyle {color {white}+}!!!theta {color {white}'},!} 是天顶角, + φ − {displaystyle {color {white}+}!!!varphi {color {white}!!!-},!} 是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中 β {displaystyle beta ,!} 是一点的参数纬度, + λ ′ {displaystyle {color {white}+}!!!lambda {color {white}'},!} 是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中 p ≈ 1.6075 {displaystyle papprox 1.6075,} 。这样相对误差最多为 1.061 {displaystyle 1.061,} %(Knud Thomsen公式); p = 8 5 = 1.6 {displaystyle p={frac {8}{5}}=1.6,} 的值对于接近于球的椭球较为适宜,其相对误差最多为 1.178 {displaystyle 1.178,} %(David W. Cantrell公式)。对于 a = b {displaystyle a=b,} 的情况,有一个精确的公式:c {displaystyle c,} 比 a {displaystyle a,} 和 b {displaystyle b,} 都小很多时,表面积近似等于 2 π a b . {displaystyle 2pi ab.,!} 。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径 d 2 {displaystyle {d_{2}}} 与 d 1 {displaystyle {d_{1}}} 可表示为d 1 , 2 2 = 8 ( 1 − z c 2 ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) ∑ i = 1 3 cos 2 ⁡ p i r i 2 ± ( ∑ i = 1 3 cos 2 ⁡ p i r i 2 ) 2 − 4 ( ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) / r 1 2 r 2 2 r 3 2 {displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中 ρ {displaystyle rho ,!} 是密度。均匀密度的椭球的转动惯量为:其中 I x x {displaystyle I_{mathrm {xx} },!} 、 I y y {displaystyle I_{mathrm {yy} },!} 和 I z z {displaystyle I_{mathrm {zz} },!} 分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。

相关

  • 作品作品,亦称创作、创意成品、著作,是具有创作性,并且可以通过某种形式复制的成品。著作权法保障了这些创造性活动的表现形式。作品的创作者就是作者。作品的形式有很多种,不同的作
  • L.卡尔·冯·林奈(英语:Carl Linnaeus,瑞典语:Carl von Linné,1707年5月23日-1778年1月10日),也译为林内,受封贵族前名为卡尔·林奈乌斯(Carl Linnaeus),由于瑞典学者阶层的姓常拉丁化,又
  • 自然选择自然选择(英语:natural selection,传统上也译为天择)指生物的遗传特征在生存竞争中,由于具有某种优势或某种劣势,因而在生存能力上产生差异,并进而导致繁殖能力的差异,使得这些特征
  • 西进时期美国旧西部(American Old West或Wild West)是指美国领土扩张时期,美国西部的历史、地理、居民、文化等多元内涵,这段时间从十七世纪初的英国美洲殖民地到1912年建立最后一个美国
  • 布莱克史密斯研究所布莱克史密斯研究所(Blacksmith Institute)是一个资助与环境污染相关研究的非政府机构,成立于1999年,总部设于美国纽约市,2002年起在中国运作。受资助的其中一个研究计划是“受污
  • 巴统巴统 (格鲁吉亚语:ბათუმი,拉丁化:Batumi),为格鲁吉亚西南部的阿扎尔自治共和国首府,位于黑海之滨,为当地著名的旅游胜地。2002年人口121,806。巴统是格鲁吉亚重要的港口和商业
  • 缓冲剂缓冲溶液(德语:Pufferlösung;英语:buffer solution;法语:solution tampon)指由“弱酸及其共轭碱之盐类”或“弱碱及其共轭酸之盐类”所组成的缓冲对配制的,能够在加入一定量其他物
  • 苔藓植物门藓类植物门(学名:Bryophyta)是植物界的一门,是一类一般在1到10公分高左右的微小且柔软的有胚植物,但也有些物种会比较高大。只要有潮湿的环境与阳光照射就能轻易生长,没有花朵或种
  • UTC类群UTC类群(英语:UTC clade)是绿藻中的一个单系群。它包括石莼纲、共球藻纲和绿藻纲。
  • CPd有机钯化学是有机金属化学的一个分支,是主要研究有机钯化合物与其反应的学科。钯常用于烯烃或炔烃发生氢化反应的催化剂。这类反应过程通常都涉及了钯-碳共价键的形成。钯化合