椭球体

✍ dations ◷ 2025-12-10 14:56:27 #椭球体
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中 + θ ′ {displaystyle {color {white}+}!!!theta {color {white}'},!} 是天顶角, + φ − {displaystyle {color {white}+}!!!varphi {color {white}!!!-},!} 是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中 β {displaystyle beta ,!} 是一点的参数纬度, + λ ′ {displaystyle {color {white}+}!!!lambda {color {white}'},!} 是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中 p ≈ 1.6075 {displaystyle papprox 1.6075,} 。这样相对误差最多为 1.061 {displaystyle 1.061,} %(Knud Thomsen公式); p = 8 5 = 1.6 {displaystyle p={frac {8}{5}}=1.6,} 的值对于接近于球的椭球较为适宜,其相对误差最多为 1.178 {displaystyle 1.178,} %(David W. Cantrell公式)。对于 a = b {displaystyle a=b,} 的情况,有一个精确的公式:c {displaystyle c,} 比 a {displaystyle a,} 和 b {displaystyle b,} 都小很多时,表面积近似等于 2 π a b . {displaystyle 2pi ab.,!} 。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径 d 2 {displaystyle {d_{2}}} 与 d 1 {displaystyle {d_{1}}} 可表示为d 1 , 2 2 = 8 ( 1 − z c 2 ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) ∑ i = 1 3 cos 2 ⁡ p i r i 2 ± ( ∑ i = 1 3 cos 2 ⁡ p i r i 2 ) 2 − 4 ( ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) / r 1 2 r 2 2 r 3 2 {displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中 ρ {displaystyle rho ,!} 是密度。均匀密度的椭球的转动惯量为:其中 I x x {displaystyle I_{mathrm {xx} },!} 、 I y y {displaystyle I_{mathrm {yy} },!} 和 I z z {displaystyle I_{mathrm {zz} },!} 分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。

相关

  • 丁酸丁酸,又称酪酸,是化学式为CH3CH2CH2-COOH的羧酸和短链饱和脂肪酸,存在于腐臭的黄油、帕马森干酪、呕吐物和腋臭中。丁酸带有难闻的气味,味先辣后甜,与乙醚类似。10ppb浓度的丁酸
  • 利比亚自发强制实施联合国安理会1973号决议的多国部队萨科齐总统 埃都尔德·吉约海军上将卡梅伦首相 大卫·理查兹爵士(英语:David Richards (British Army officer))上将奥巴马总
  • 希佩尔-林道综合征希佩尔-林道综合征(Von Hippel–Lindau disease,VHL综合征)是一种罕见的常染色体显性遗传性疾病,表现为血管母细胞瘤累及小脑、脊髓、肾脏以及视网膜。其若干病变包括肾脏血管瘤
  • 下腔静脉下腔静脉(法语:Inferior vena cava、IVC))位于腹主动脉右侧粗大壁薄的血管即下腔静脉。它的上端穿膈的腔静脉裂孔入右心房,下端于第5腰椎右前方由左右骼总静脉汇合而成。沿途可
  • 形意符号语言学上的形意符号(英:ideogram,亦称表意符号、形意图或表意图),是一种图形符号,只代表一定意义。它不是一种代表语言的语素或语音的文字系统。换句话说,这种文字系统并不能用于记
  • 威廉·哈维威廉·哈维(英语:William Harvey,1578年4月1日-1657年6月3日) 英国医生,实验生理学的创始人之一。他根据实验,证实了动物体内的血液循环现象,并阐明了心脏在循环过程中的作用,指出血
  • Species+《濒危野生动植物物种国际贸易公约》(英语:Convention on International Trade in Endangered Species of Wild Fauna and Flora,缩写:CITES)是一个在1963年时由“国际自然与天然
  • 甾体的药物使用注意事项及指引甾体(英语:steroid)是属于脂类的一类,特征是有一个四环的母核。所有甾体都是从乙酰辅酶A生物合成路径所衍生的。不同的甾体在其附在环上的官能团有所不同,而其基本结构都是有一个
  • 休伦冰河时期休伦冰河时期(或称Makganyene冰河期)出现于24亿年前到21亿年前,位于古元古代的成铁纪与层侵纪之间,期间伴随有大氧化事件(Great Oxygenation Event, GOE)的发生。大氧化事件使空气
  • 鬲部,为汉字索引中的部首之一,康熙字典214个部首中的第一百九十三个(十划的则为第七个)。就繁体和简体中文中,鬲部归于十划部首。鬲部只以左方、下方为部字。且无其他部首可用者