量子退火

✍ dations ◷ 2025-04-26 12:26:32 #最优化算法,算法

量子退火(英语:Quantum annealing )是一种量子涨落特性的次经验算法(英语:Metaheuristic),可以在目标函数拥有多组候选解答的情况下,找到全局最优解。量子退火主要用于解决离散空间有多个局部最小值的问题(组合优化问题),例如寻找自旋玻璃的基态。

量子退火首先从权重相同的所有可能状态(候选状态)的量子叠加态开始运行,接着物理系统依含时薛定谔方程开始量子演化。根据横向场的时间依赖强度,状态之间产生量子穿隧,使得所有候选状态的几率幅不断改变,实现量子并行性。若横向场的变化速度足够慢,则系统会保持在接近瞬时哈密顿量的基态,此即为绝热量子计算(英语:Adiabatic quantum computation)。若横场的变化速度加快,则系统可能会暂时离开基态,而最终问题哈密顿量的基态将会增加更多的可能性,此即非绝热量子计算(diabatic quantum computation)。横向场最终被关闭,并且预期系统已得到原优化问题的解,也就是到达相对应的经典易辛模型基态。在最初的理论被提出之后,随即有了随机磁体量子退火成功的实验证明。在一篇关于组合优化(NP困难)问题的介绍中,列入了基于量子退火算法的一般结构,用于求解max-SAT,最小multicut问题这类算法的两个实例,以及D-Wave 系统公司所制造的量子退火系统产品。

模拟退火法的“温度”参数可以类比量子退火的“隧道场强度”。 在模拟退火中,温度决定了从单一当前状态转移到较高“能量”状态的概率。 在量子退火中,横向场的强度决定了改变所有并行状态几率幅的量子力学几率。 分析和数值证据表明量子退火在某些条件下优于模拟退火。

隧道场基本上是一个动能项,它不与原始玻璃的经典势能部分交换。整个过程可以利用量子蒙地卡罗(英语:Quantum_Monte_Carlo)(或其他随机技术)在计算机上进行模拟,从而得到寻找经典玻璃基态的启发式算法。

在对纯数学目标函数退火的例子中,可以将这个问题中的变量考虑为经典自由度,而代价函数(损失函数)则对应势能函数(经典哈密顿函数)。然后在哈密顿量中人为引入非交换变量(与原始数学问题变量拥有非零交换子的变量)组成的合适项,以发挥隧道场(动力学部分)的作用。这样就可以用前面构造出的量子哈密顿量(原始函数+非交换部分)进行模拟。退火的效率将取决于选择的非交换项。

在实验和理论上已经证明,在某些情况下,尤其在较浅的局部极小值被非常高但很薄的势垒(成本)围绕的例子中,量子退火确实优于热退火(模拟退火)。因为热跃迁概率(正比于 e Δ k B T {\displaystyle e^{-{\frac {\Delta }{k_{B}T}}}} T {\displaystyle T} 为温度, k B {\displaystyle k_{B}} 为波兹曼常数)仅相依于能障高度 Δ {\displaystyle \Delta } ,对于非常高的能障,热波动很难使系统从这样的局部最小值出来,然而在1989年Ray、Chakrabarti和Chakrabarti提出,对相同能障的量子穿隧几率不仅取决于势垒的高度 Δ {\displaystyle \Delta } ,还取决于它的宽度 w {\displaystyle w} ,几率大约为 e Δ w Γ {\displaystyle e^{-{\frac {{\sqrt {\Delta }}w}{\Gamma }}}} Γ {\displaystyle \Gamma } 为穿隧场。若势垒够窄(即 w Δ {\displaystyle w\ll {\sqrt {\Delta }}} ),则量子波动肯定会使系统脱离浅局部最小值,对于 N {\displaystyle N} 自旋玻璃, Δ {\displaystyle \Delta } 正比于 N {\displaystyle N} ,对于横向场的线性退火,可以得到退火时间 τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{\sqrt {N}}} (不同于热退火, τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{N}} ),甚至在 w {\displaystyle w} 减少快于等于 1 / N {\displaystyle 1/{\sqrt {N}}} 的情形下,变成与 N {\displaystyle N} 无关的。

据推测,在量子计算机中,这种模拟比传统计算机更精确有效,因为它可以直接执行穿隧而不需手动添加。 此外,因为没有用到传统量子算法中所用的量子纠缠,它可在不这么严格的错误控制下完成工作。

参见:D-Wave 系统公司

相关

  • 尚柏朗过滤器尚柏朗过滤器,或称巴斯德-尚柏朗过滤器,是由查理斯·尚柏朗于1884年发明的陶瓷制滤水器。其原理和伯克菲尔德过滤器(英语:Berkefeld filter)类似。该过滤器由陶瓷制的内外管构成
  • 物理教育物理教育是全世界的中学和大学教育的一个重要组成部分。许多综合大学都拥有物理专业。由于物理学是自然科学和工程技术的基础学科,因此物理也是取得科学和工程学位的必修课程
  • 星云星云(源自拉丁文的:nebulae或nebulæ,与ligature或nebulas,意思就是“云”)是宇宙尘、氢气、氦气、和其他等离子体聚集的星际云。原本是天文学上通用的名词,泛指任何天文上的扩散
  • 美国空军美国空军(英语:United States Air Force,缩写:USAF)是美国军队中的空军军种。其任务是“通过空中、外太空和网络空间中的武力保护美国及其利益”,它于1947年9月18日正式成立。美国
  • span class=nowrapCfClsub3/sub/span氯化锎是一种无机化合物,化学式CfCl3,有很强的放射性。氯化锎可由氧化锎和氯化氢气体反应得到。氯化锎在加热(500℃)下,可以在HCl—H2O的气流中发生水解,产生氯氧化锎。CfF3 · C
  • 番荔枝科番荔枝科(学名:Annonaceae)在生物分类学上是被子植物木兰目下的一科。约有129属,2120种,是木兰目中最大的科。有的果实可食,有的可材用,有些为观赏植物。大多分布在热带地区,少数分
  • 南纬纬度(φ)是地球表面一个点的南北地理位置的表示法。纬度与经度通常一起使用以确定地表上某点的精确位置。纬度是一个角度,其范围从赤道的0度到南北极的90度。在英文文本中,纬度
  • 卡门贝尔卡芒贝尔乳酪(Camembert),又译“金银币、卡门培尔、卡门贝尔、卡门伯”,是一种软的法国白霉圆饼形乳酪,以法国下诺曼第奥恩省Vimoutiers附近的村庄卡芒贝尔命名。卡芒贝尔于1791
  • 驻越韩国军司令部驻越韩国军司令部(朝鲜语:주월한국군사령부/駐越韓國軍司令部;英语:Headquarters of Republic of Korea forces in Vietnam,缩写ROKFV),是越南战争爆发、韩国出兵越南后,根据“国防部
  • 氟硼酸铵氟硼酸铵是一种无机化合物,化学式为NH4BF4。氟硼酸铵可以由硼酸和氟化铵在硫酸中反应得到。氨和氟硼酸反应,也能生成氟硼酸铵。