量子退火

✍ dations ◷ 2024-12-23 01:51:56 #最优化算法,算法

量子退火(英语:Quantum annealing )是一种量子涨落特性的次经验算法(英语:Metaheuristic),可以在目标函数拥有多组候选解答的情况下,找到全局最优解。量子退火主要用于解决离散空间有多个局部最小值的问题(组合优化问题),例如寻找自旋玻璃的基态。

量子退火首先从权重相同的所有可能状态(候选状态)的量子叠加态开始运行,接着物理系统依含时薛定谔方程开始量子演化。根据横向场的时间依赖强度,状态之间产生量子穿隧,使得所有候选状态的几率幅不断改变,实现量子并行性。若横向场的变化速度足够慢,则系统会保持在接近瞬时哈密顿量的基态,此即为绝热量子计算(英语:Adiabatic quantum computation)。若横场的变化速度加快,则系统可能会暂时离开基态,而最终问题哈密顿量的基态将会增加更多的可能性,此即非绝热量子计算(diabatic quantum computation)。横向场最终被关闭,并且预期系统已得到原优化问题的解,也就是到达相对应的经典易辛模型基态。在最初的理论被提出之后,随即有了随机磁体量子退火成功的实验证明。在一篇关于组合优化(NP困难)问题的介绍中,列入了基于量子退火算法的一般结构,用于求解max-SAT,最小multicut问题这类算法的两个实例,以及D-Wave 系统公司所制造的量子退火系统产品。

模拟退火法的“温度”参数可以类比量子退火的“隧道场强度”。 在模拟退火中,温度决定了从单一当前状态转移到较高“能量”状态的概率。 在量子退火中,横向场的强度决定了改变所有并行状态几率幅的量子力学几率。 分析和数值证据表明量子退火在某些条件下优于模拟退火。

隧道场基本上是一个动能项,它不与原始玻璃的经典势能部分交换。整个过程可以利用量子蒙地卡罗(英语:Quantum_Monte_Carlo)(或其他随机技术)在计算机上进行模拟,从而得到寻找经典玻璃基态的启发式算法。

在对纯数学目标函数退火的例子中,可以将这个问题中的变量考虑为经典自由度,而代价函数(损失函数)则对应势能函数(经典哈密顿函数)。然后在哈密顿量中人为引入非交换变量(与原始数学问题变量拥有非零交换子的变量)组成的合适项,以发挥隧道场(动力学部分)的作用。这样就可以用前面构造出的量子哈密顿量(原始函数+非交换部分)进行模拟。退火的效率将取决于选择的非交换项。

在实验和理论上已经证明,在某些情况下,尤其在较浅的局部极小值被非常高但很薄的势垒(成本)围绕的例子中,量子退火确实优于热退火(模拟退火)。因为热跃迁概率(正比于 e Δ k B T {\displaystyle e^{-{\frac {\Delta }{k_{B}T}}}} T {\displaystyle T} 为温度, k B {\displaystyle k_{B}} 为波兹曼常数)仅相依于能障高度 Δ {\displaystyle \Delta } ,对于非常高的能障,热波动很难使系统从这样的局部最小值出来,然而在1989年Ray、Chakrabarti和Chakrabarti提出,对相同能障的量子穿隧几率不仅取决于势垒的高度 Δ {\displaystyle \Delta } ,还取决于它的宽度 w {\displaystyle w} ,几率大约为 e Δ w Γ {\displaystyle e^{-{\frac {{\sqrt {\Delta }}w}{\Gamma }}}} Γ {\displaystyle \Gamma } 为穿隧场。若势垒够窄(即 w Δ {\displaystyle w\ll {\sqrt {\Delta }}} ),则量子波动肯定会使系统脱离浅局部最小值,对于 N {\displaystyle N} 自旋玻璃, Δ {\displaystyle \Delta } 正比于 N {\displaystyle N} ,对于横向场的线性退火,可以得到退火时间 τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{\sqrt {N}}} (不同于热退火, τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{N}} ),甚至在 w {\displaystyle w} 减少快于等于 1 / N {\displaystyle 1/{\sqrt {N}}} 的情形下,变成与 N {\displaystyle N} 无关的。

据推测,在量子计算机中,这种模拟比传统计算机更精确有效,因为它可以直接执行穿隧而不需手动添加。 此外,因为没有用到传统量子算法中所用的量子纠缠,它可在不这么严格的错误控制下完成工作。

参见:D-Wave 系统公司

相关

  • 电子显微镜电子显微镜(英语:electron microscope,简称电镜或电显)是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波
  • 白磷磷的同素异形体有许多种,其中白磷和红磷最为常见。另外还存在紫磷和黑磷。气态磷单质中有P2分子与磷原子。白磷(因商品白磷常带黄色,故又称为黄磷:180),分子式P4,为白色固体,质软。
  • 克劳斯·冯·克利钦克劳斯·冯·克利青(德语:Klaus von Klitzing,1943年6月28日-),德国物理学家。他因于1980年2月5日在格勒诺布尔高强度磁场实验室发现量子霍尔效应而获1985年诺贝尔物理学奖。冯·
  • AAU美洲大学协会(又称美国大学协会,英语:Association of American Universities,缩写:AAU)是由美国和加拿大65所顶尖的研究型大学所组成的一个教学和研究组织。 它的主要宗旨是致力于
  • 厄立特利亚海航行记厄立特利亚海航行记 (希腊语:Περίπλους τῆς Ἐρυθράς Θαλάσσης, 拉丁语:Periplus Maris Erythraei)是一部在罗马希腊时代由希腊文所写的航行记。描述
  • 红色精灵精灵(英语:Sprites)是一种发生在积雨云以上的大范围放电现象,由雷暴云和地面之间的正地闪所致。精灵发橙红色光,会在夜空中以各种形状闪烁地出现。精灵在对流层以上海拔约50至90
  • 克雷布斯巴赫河 (施泰纳赫河支流)坐标:50°12′44″N 11°13′16″E / 50.21222°N 11.22111°E / 50.21222; 11.22111克雷布斯巴赫河(德语:Krebsbach),是德国的河流,位于该国东南部,由巴伐利亚负责管辖,属于施泰纳
  • 中铁城市发展投资中铁城市发展投资集团有限公司,注册地位于成都,隶属于中国铁路工程集团的上市公司中国中铁。业务性质为项目建设与资产管理。2017年,公司总资产137.35亿元,净资产20.70亿元,净利
  • DockerDocker 是一个开放源代码软件,是一个开放平台,用于开发应用、交付(shipping)应用、运行应用。 Docker允许用户将基础设施(Infrastructure)中的应用单独分割出来,形成更小的颗粒(容器
  • 重庆轨道交通4号线.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none