量子退火

✍ dations ◷ 2025-07-30 00:33:42 #最优化算法,算法

量子退火(英语:Quantum annealing )是一种量子涨落特性的次经验算法(英语:Metaheuristic),可以在目标函数拥有多组候选解答的情况下,找到全局最优解。量子退火主要用于解决离散空间有多个局部最小值的问题(组合优化问题),例如寻找自旋玻璃的基态。

量子退火首先从权重相同的所有可能状态(候选状态)的量子叠加态开始运行,接着物理系统依含时薛定谔方程开始量子演化。根据横向场的时间依赖强度,状态之间产生量子穿隧,使得所有候选状态的几率幅不断改变,实现量子并行性。若横向场的变化速度足够慢,则系统会保持在接近瞬时哈密顿量的基态,此即为绝热量子计算(英语:Adiabatic quantum computation)。若横场的变化速度加快,则系统可能会暂时离开基态,而最终问题哈密顿量的基态将会增加更多的可能性,此即非绝热量子计算(diabatic quantum computation)。横向场最终被关闭,并且预期系统已得到原优化问题的解,也就是到达相对应的经典易辛模型基态。在最初的理论被提出之后,随即有了随机磁体量子退火成功的实验证明。在一篇关于组合优化(NP困难)问题的介绍中,列入了基于量子退火算法的一般结构,用于求解max-SAT,最小multicut问题这类算法的两个实例,以及D-Wave 系统公司所制造的量子退火系统产品。

模拟退火法的“温度”参数可以类比量子退火的“隧道场强度”。 在模拟退火中,温度决定了从单一当前状态转移到较高“能量”状态的概率。 在量子退火中,横向场的强度决定了改变所有并行状态几率幅的量子力学几率。 分析和数值证据表明量子退火在某些条件下优于模拟退火。

隧道场基本上是一个动能项,它不与原始玻璃的经典势能部分交换。整个过程可以利用量子蒙地卡罗(英语:Quantum_Monte_Carlo)(或其他随机技术)在计算机上进行模拟,从而得到寻找经典玻璃基态的启发式算法。

在对纯数学目标函数退火的例子中,可以将这个问题中的变量考虑为经典自由度,而代价函数(损失函数)则对应势能函数(经典哈密顿函数)。然后在哈密顿量中人为引入非交换变量(与原始数学问题变量拥有非零交换子的变量)组成的合适项,以发挥隧道场(动力学部分)的作用。这样就可以用前面构造出的量子哈密顿量(原始函数+非交换部分)进行模拟。退火的效率将取决于选择的非交换项。

在实验和理论上已经证明,在某些情况下,尤其在较浅的局部极小值被非常高但很薄的势垒(成本)围绕的例子中,量子退火确实优于热退火(模拟退火)。因为热跃迁概率(正比于 e Δ k B T {\displaystyle e^{-{\frac {\Delta }{k_{B}T}}}} T {\displaystyle T} 为温度, k B {\displaystyle k_{B}} 为波兹曼常数)仅相依于能障高度 Δ {\displaystyle \Delta } ,对于非常高的能障,热波动很难使系统从这样的局部最小值出来,然而在1989年Ray、Chakrabarti和Chakrabarti提出,对相同能障的量子穿隧几率不仅取决于势垒的高度 Δ {\displaystyle \Delta } ,还取决于它的宽度 w {\displaystyle w} ,几率大约为 e Δ w Γ {\displaystyle e^{-{\frac {{\sqrt {\Delta }}w}{\Gamma }}}} Γ {\displaystyle \Gamma } 为穿隧场。若势垒够窄(即 w Δ {\displaystyle w\ll {\sqrt {\Delta }}} ),则量子波动肯定会使系统脱离浅局部最小值,对于 N {\displaystyle N} 自旋玻璃, Δ {\displaystyle \Delta } 正比于 N {\displaystyle N} ,对于横向场的线性退火,可以得到退火时间 τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{\sqrt {N}}} (不同于热退火, τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{N}} ),甚至在 w {\displaystyle w} 减少快于等于 1 / N {\displaystyle 1/{\sqrt {N}}} 的情形下,变成与 N {\displaystyle N} 无关的。

据推测,在量子计算机中,这种模拟比传统计算机更精确有效,因为它可以直接执行穿隧而不需手动添加。 此外,因为没有用到传统量子算法中所用的量子纠缠,它可在不这么严格的错误控制下完成工作。

参见:D-Wave 系统公司

相关

  • 血清学血清学(serology)的诊断原为研究血清反应的一门医学分支,如今则多用来观察患者的血清以判断、分析相应的疾病。血清检查是医学上常用的一种检测手段,除了可以诊断细菌、病毒外
  • 浓硫酸硫酸(化学分子式为H2SO4)也被称为化学工业之母,是一种具有高腐蚀性的强矿物酸,一般为透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业制造过程中,硫酸也可能被染成暗
  • 中国酒文化饮酒是中国上古祭祀典礼之一,第一个造酒或发明酒的人已不可考,有仪狄与杜康两说,后世多将杜康尊为酒神,造酒业也奉杜康为祖师爷,在文学中杜康两字也成为酒的代名词。中国古代的酒
  • 戴维·阿滕伯勒大卫·弗雷德里克·阿滕伯勒爵士OM CH CVO CBE FRS FZS FSA(英语:Society of Antiquaries of London)(英语:Sir David Frederick Attenborough,/ˈætənbərə/,1926年5月8日-),生于
  • 托尼奖最佳音乐剧女主角托尼奖最佳音乐剧女主角授予在音乐剧中有卓越表现的女主角,包括新制作的剧目与旧剧新编的剧目。此奖项于1948年设立,但从1956年起才每届先公布提名名单。第1届第2届第3届第4届
  • 斗鱼直播34(2019年7月,中国大陆)斗鱼(NASDAQ:DOYU)是一家隶属于武汉斗鱼网络科技有限公司的以游戏直播为主的弹幕式视频直播分享网站。其前身为AcFun生放送直播,2014年正式更名为斗鱼。该网
  • 拜耳拜耳股份公司(Bayer AG /ˈbaɪər/; 德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2
  • 国立科尔多瓦大学国立科尔多瓦大学(西班牙语:Universidad Nacional de Córdoba)是阿根廷科尔多瓦市的一所国立大学。科尔多瓦大学创设于1613年,为阿根廷最早的大学。是整个美洲3所最古老的高等
  • 甲基硫醇甲硫醇又被称为巯基甲烷、硫氢甲烷,分子式:CH3-SH,分子量:48.10,CAS号:74-93-1。常温常压下为无色气体,有烂白菜气味,因此常被加进煤气中。它是一个具有独特腐臭气味的无色气体。它
  • 基督教民主党 (荷兰)基督教民主呼吁(荷兰语:Christen-Democratisch Appèl,缩写为CDA)是荷兰的一个基督教民主主义政党。1880年起,许多天主教和新教政党一同活动,被称作“联盟”。1888年,他们筹组第一