量子退火

✍ dations ◷ 2025-10-28 00:57:40 #最优化算法,算法

量子退火(英语:Quantum annealing )是一种量子涨落特性的次经验算法(英语:Metaheuristic),可以在目标函数拥有多组候选解答的情况下,找到全局最优解。量子退火主要用于解决离散空间有多个局部最小值的问题(组合优化问题),例如寻找自旋玻璃的基态。

量子退火首先从权重相同的所有可能状态(候选状态)的量子叠加态开始运行,接着物理系统依含时薛定谔方程开始量子演化。根据横向场的时间依赖强度,状态之间产生量子穿隧,使得所有候选状态的几率幅不断改变,实现量子并行性。若横向场的变化速度足够慢,则系统会保持在接近瞬时哈密顿量的基态,此即为绝热量子计算(英语:Adiabatic quantum computation)。若横场的变化速度加快,则系统可能会暂时离开基态,而最终问题哈密顿量的基态将会增加更多的可能性,此即非绝热量子计算(diabatic quantum computation)。横向场最终被关闭,并且预期系统已得到原优化问题的解,也就是到达相对应的经典易辛模型基态。在最初的理论被提出之后,随即有了随机磁体量子退火成功的实验证明。在一篇关于组合优化(NP困难)问题的介绍中,列入了基于量子退火算法的一般结构,用于求解max-SAT,最小multicut问题这类算法的两个实例,以及D-Wave 系统公司所制造的量子退火系统产品。

模拟退火法的“温度”参数可以类比量子退火的“隧道场强度”。 在模拟退火中,温度决定了从单一当前状态转移到较高“能量”状态的概率。 在量子退火中,横向场的强度决定了改变所有并行状态几率幅的量子力学几率。 分析和数值证据表明量子退火在某些条件下优于模拟退火。

隧道场基本上是一个动能项,它不与原始玻璃的经典势能部分交换。整个过程可以利用量子蒙地卡罗(英语:Quantum_Monte_Carlo)(或其他随机技术)在计算机上进行模拟,从而得到寻找经典玻璃基态的启发式算法。

在对纯数学目标函数退火的例子中,可以将这个问题中的变量考虑为经典自由度,而代价函数(损失函数)则对应势能函数(经典哈密顿函数)。然后在哈密顿量中人为引入非交换变量(与原始数学问题变量拥有非零交换子的变量)组成的合适项,以发挥隧道场(动力学部分)的作用。这样就可以用前面构造出的量子哈密顿量(原始函数+非交换部分)进行模拟。退火的效率将取决于选择的非交换项。

在实验和理论上已经证明,在某些情况下,尤其在较浅的局部极小值被非常高但很薄的势垒(成本)围绕的例子中,量子退火确实优于热退火(模拟退火)。因为热跃迁概率(正比于 e Δ k B T {\displaystyle e^{-{\frac {\Delta }{k_{B}T}}}} T {\displaystyle T} 为温度, k B {\displaystyle k_{B}} 为波兹曼常数)仅相依于能障高度 Δ {\displaystyle \Delta } ,对于非常高的能障,热波动很难使系统从这样的局部最小值出来,然而在1989年Ray、Chakrabarti和Chakrabarti提出,对相同能障的量子穿隧几率不仅取决于势垒的高度 Δ {\displaystyle \Delta } ,还取决于它的宽度 w {\displaystyle w} ,几率大约为 e Δ w Γ {\displaystyle e^{-{\frac {{\sqrt {\Delta }}w}{\Gamma }}}} Γ {\displaystyle \Gamma } 为穿隧场。若势垒够窄(即 w Δ {\displaystyle w\ll {\sqrt {\Delta }}} ),则量子波动肯定会使系统脱离浅局部最小值,对于 N {\displaystyle N} 自旋玻璃, Δ {\displaystyle \Delta } 正比于 N {\displaystyle N} ,对于横向场的线性退火,可以得到退火时间 τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{\sqrt {N}}} (不同于热退火, τ {\displaystyle \tau } 正比于 e N {\displaystyle e^{N}} ),甚至在 w {\displaystyle w} 减少快于等于 1 / N {\displaystyle 1/{\sqrt {N}}} 的情形下,变成与 N {\displaystyle N} 无关的。

据推测,在量子计算机中,这种模拟比传统计算机更精确有效,因为它可以直接执行穿隧而不需手动添加。 此外,因为没有用到传统量子算法中所用的量子纠缠,它可在不这么严格的错误控制下完成工作。

参见:D-Wave 系统公司

相关

  • 罗伯特·G·爱德华兹罗伯特·杰弗里·爱德华兹爵士,CBE,FRS(英语:Sir Robert Geoffrey Edwards,1925年9月27日-2013年4月10日),英国生理学家,生殖医学的先驱者,因“开发体外受精技术”的成就被授予2010年
  • 历史性火灾列表该列表主要包含被人类所记载的、对人类破坏较为严重的火灾,许多规模庞大的森林大火都没有包含在内。
  • 凯伦·白烈森凯伦·冯·白列森-菲尼克男爵夫人(Baronesse Karen von Blixen-Finecke, 1885年4月17日-1962年9月7日),笔名伊莎·丹尼森(Isak Dinesen),丹麦著名的现代作家,写作上使用丹麦语、法语
  • 自杀防治专线列表此列表记录全球各地的自杀防治专线,依国家/地区划分。列表内的电话可为遭遇情绪危机和有自杀倾向的人提供援助。收录入此列表的自杀防治专线必须:
  • 真空焊硬焊(英语:brazing)是一种焊接方式,将熔点低于欲连接工件之熔填料(钎料)加热至高于熔点,使之具有足够的流动性,利用毛细作用充分填充于两工件间(称为浸润),并待其凝固后将二者接合起来
  • 乳杆见内文乳杆菌属(Lactobacillus)即为乳酸杆菌,是一群存在于人类体内的益生菌。乳杆菌因能够将碳水化合物发酵成乳酸而得名,可用于制造液态酸奶、固态奶酪、德国酸菜、啤酒、葡萄
  • 灵山卫灵山卫,明朝时设置的卫所。洪武五年(1372年)置,治所在今青岛市黄岛区灵山卫街道。领左、前、后三千户所。属山东都司。清朝雍正十二年(1734年)省。
  • 费雪原理费雪原理(英语:Fisher's principle)解释了为何大多数物种的性别比接近于1:1。 此原理最初由Düssing在1887年提出,之后在罗纳德·费雪1930年的巨著《自然选择的遗传理论》中提到
  • 超数染色体超数染色体(英语:supernumerary chromosome),又称为B染色体(B-chromosome)、多余染色体、额外染色体或附属染色体。与正常染色体(A染色体)对应,超数染色体染色体是种群中某些个体的附
  • 京旗外三营京旗外三营指的是圆明园护卫营、香山健锐营和蓝靛厂外火器营。这几个旗营陆续兴建于清代中期,尤其特殊的政治和军事需要,它们均设在北京城外的西北郊今海淀区内,故称为京旗外三