正则变换

✍ dations ◷ 2025-04-27 18:19:45 #经典力学,哈密顿力学,辛几何

在哈密顿力学里,正则变换(canonical transformation)是一种正则坐标的改变, ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,而同时维持哈密顿方程的形式,虽然哈密顿量可能会改变。正则变换是哈密顿-亚可比方程与刘维尔定理的基础。

点变换(point transformation)将广义坐标 q = ( q 1 ,   q 2 ,   ,   q N ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ \dots ,\ q_{N})} 变换成广义坐标 Q = ( Q 1 ,   Q 2 ,   ,   Q N ) {\displaystyle \mathbf {Q} =(Q_{1},\ Q_{2},\ \dots ,\ Q_{N})} ,点变换方程的形式为

其中, t {\displaystyle t} 是时间。

在哈密顿力学里,由于广义坐标与广义动量 p = ( p 1 ,   p 2 ,   ,   p N ) {\displaystyle \mathbf {p} =(p_{1},\ p_{2},\ \dots ,\ p_{N})} 同样地都是自变量(independent variable),点变换的定义可以加以延伸,使变换方程成为

其中, P = ( P 1 ,   P 2 ,   ,   P N ) {\displaystyle \mathbf {P} =(P_{1},\ P_{2},\ \dots ,\ P_{N})} 是新的广义动量。

为了分辨这两种不同的点变换,称前一种点变换为位形空间点变换,而后一种为相空间点变换。

在哈密顿力学里,正则变换将一组正则坐标 ( q ,   p ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )} 变换为一组新的正则坐标 ( Q ,   P ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} )} ,而同时维持哈密顿方程的形式(称为形式不变性)。原本的哈密顿方程为

新的哈密顿方程为

其中, H ( q ,   p ,   t ) {\displaystyle {\mathcal {H}}(\mathbf {q} ,\ \mathbf {p} ,\ t)} K ( Q ,   P ,   t ) {\displaystyle {\mathcal {K}}(\mathbf {Q} ,\ \mathbf {P} ,\ t)} 分别为原本的哈密顿量与新的哈密顿量。

思考一个物理系统的哈密顿量

假设哈密顿量跟其中一个广义坐标 q i {\displaystyle q_{i}} 无关,则称 q i {\displaystyle q_{i}} 为可略坐标(ignorable coordinate),或循环坐标(cyclic coordinate):

在哈密顿方程中,广义动量对于时间的导数是

所以,广义动量 p i {\displaystyle p_{i}} 是常数 k i {\displaystyle k_{i}}

假设一个系统里有 n {\displaystyle n} 个广义坐标是可略坐标。找出这 n {\displaystyle n} 个可略坐标,则可以使这系统减少 2 n {\displaystyle 2n} 个变数;使问题的困难度减少很多。正则变换可以用来寻找这一组可略坐标。

采取一种间接的方法,称为生成函数方法,从 ( q ,   p ,   H ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} ,\ {\mathcal {H}})} 变换到 ( Q ,   P ,   K ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} ,\ {\mathcal {K}})} 。为了要保证正则变换的正确性,第二组变数必须跟第一组变数一样地遵守哈密顿原理

那么,必须令

其中, σ {\displaystyle \sigma } 是标度因子, G {\displaystyle G} 是生成函数。

假若一个变换涉及标度因子,则称此变换为标度变换(scale transformation)。一般而言,标度因子不一定等于1。假若标度因子不等于1,则称此正则变换为延伸正则变换(extended canonical transformation);假若标度因子等于1,则称为正则变换。

任何延伸正则变换都可以修改为正则变换。假设一个 σ 1 {\displaystyle \sigma \neq 1} 的延伸正则变换表示为

则可以设定另外一组变数与哈密顿量: Q = α Q {\displaystyle \mathbf {Q} =\alpha \mathbf {Q} '} P = β P {\displaystyle \mathbf {P} =\beta \mathbf {P} '} K = α β K {\displaystyle {\mathcal {K}}=\alpha \beta {\mathcal {K}}\,'} G = α β G {\displaystyle G=\alpha \beta G\,'} ;其中, α ,   β {\displaystyle \alpha ,\ \beta } 是用来删除 σ {\displaystyle \sigma } 的常数, σ = 1 α β {\displaystyle \sigma ={\frac {1}{\alpha \beta }}} 。经过一番运算,可以得到

显然地,这变换符合哈密顿方程。所以,任何延伸正则变换都可以改变为正则变换。

假若正则变换不显性含时间,则称为设限正则变换(restricted canonical transformation)。

生成函数 G {\displaystyle G} 的参数,除了时间以外,一半是旧的正则坐标;另一半是新的正则坐标。视选择出来不同的变数而定,一共有四种基本的生成函数。每一种基本生成函数设定一种变换,从旧的一组正则坐标变换为新的一组正则坐标。这变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 保证是正则变换。

第一型生成函数 G 1 {\displaystyle G_{1}} 只跟旧广义坐标、新广义坐标有关,

代入方程(1)。展开生成函数对于时间的全导数,

新广义坐标 Q {\displaystyle \mathbf {Q} } 和旧广义坐标 q {\displaystyle \mathbf {q} } 都是自变量,其对于时间的全导数 Q ˙ {\displaystyle {\dot {\mathbf {Q} }}} q ˙ {\displaystyle {\dot {\mathbf {q} }}} 互相无关,所以,以下 2 N + 1 {\displaystyle 2N+1} 个方程都必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,步骤如下:

第一组的 N {\displaystyle N} 个方程(2),设定了 p {\displaystyle \mathbf {p} } N {\displaystyle N} 个函数方程

在理想情况下,这些方程可以逆算出 Q {\displaystyle \mathbf {Q} } N {\displaystyle N} 个函数方程

第二组的 N {\displaystyle N} 个方程(3),设定了 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

代入函数方程(5),可以算出 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

2 N {\displaystyle 2N} 个函数方程(5)、(6),可以逆算出 2 N {\displaystyle 2N} 个函数方程

代入新哈密顿量 K {\displaystyle {\mathcal {K}}} 的方程(4),可以得到

第二型生成函数 G 2 {\displaystyle G_{2}} 的参数是旧广义坐标 q {\displaystyle \mathbf {q} } 、新广义动量 P {\displaystyle \mathbf {P} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第三型生成函数 G 3 {\displaystyle G_{3}} 的参数是旧广义动量 p {\displaystyle \mathbf {p} } 、新广义坐标 Q {\displaystyle \mathbf {Q} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第四型生成函数 G 4 ( p , P , t ) {\displaystyle G_{4}(\mathbf {p} ,\mathbf {P} ,t)} 的参数是旧广义动量 p {\displaystyle \mathbf {p} } 、新广义动量 P {\displaystyle \mathbf {P} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第一型生成函数有一个特别简易案例:

生成函数的导数分别为

旧的哈密顿量与新的哈密顿量相同:

再举一个比较复杂的例子。让

这里, g {\displaystyle \mathbf {g} } 是一组 N {\displaystyle N} 个函数。

答案是一个广义坐标的点变换,

正则变换必须满足哈密顿方程不变;哈密顿方程为正则变换的一个不变式。另外,正则变换也有几个重要的不变量。

辛标记提供了一种既简单,又有效率的标记方法来展示方程及数学运算。设定一个 2 N × 1 {\displaystyle 2N\times 1} 的竖矩阵 ξ {\displaystyle {\boldsymbol {\xi }}}  :

变数矢量 ξ {\displaystyle {\boldsymbol {\xi }}} q {\displaystyle \mathbf {q} } p {\displaystyle \mathbf {p} } 包装在一起。这样,哈密顿方程可以简易的表示为

这里, Ω {\displaystyle {\boldsymbol {\Omega }}} 是辛连结矩阵、 H {\displaystyle {\mathcal {H}}} 是哈密顿量。

应用辛标记于正则变换,正则坐标会从旧正则坐标 ξ

相关

  • 植物相植物相(拉丁文:Flora,源自罗马神话里的花之女神)又译植物群或植物区系,指某一地区某一时段的特定植物种群。Flora另一个意思是植物志,是对一个植物区系的纪录和描述。植物相的原字
  • 双心石沪双心石沪位于澎湖县七美乡,因邻近顶隙渔港又称为顶隙沪,为该岛上唯一的石沪。因其两个沪房设计上状似两个心型而闻名,2006年,澎湖县政府正式将其登录为文化景观。双心石沪原先并
  • 前列腺计算值前列腺计算值是前列腺前后径的平方与前列腺横径的比值;是对良性前列腺增生症患者最大尿流率评估的辅助依据。由于良性前列腺增生症患者前列腺体积与最大尿流率改变不成正比;与
  • 亚裔配额亚裔配额是种族配额(英语:Racial quota)的一种,自1980年起存在至今,反映了美国国内教育机构或职场中有意限制亚裔人数的现象。尽管以常春藤盟校为首的美国高等学府并不承认所谓的
  • 桂林风土记《桂林风土记》是唐代莫休符著,是现存较早的桂林地情专著,也是桂林有史料记载的最早的地方志。曾经被编入《四库全书》,原书有三卷,现在仅存一卷,共有1万5000字。 作者以诗文记游
  • 新蕾奖新蕾奖 - 全国中学生华文创作比赛由南侨中学、新加坡福建会馆、新加坡文艺协会、联合早报《逗号》联合主办。每年约有80多所中学前来参加,每届收到的稿件都超过200份。新蕾奖
  • 常春木常春木(学名:)是五加科常春木属的植物,是中国的特有植物。分布于中国大陆的云南等地,生长于海拔1,450米的地区,多生于森林中,目前尚未由人工引种栽培。
  • 莫斯可漩涡沉溺记《默斯肯漩涡沉溺记》是一部由爱伦·坡于1841年所著的短篇小说,当时发布在女性杂志Graham's Magazine上。主角到挪威附近旅行,向导带主角到悬崖边参观,并告诉主角一个关于莫斯
  • 边章边章(?-187年),本名边允,金城人,汉朝官员,后来被凉州叛军劫持而加入叛军并成为叛军中的重要人物。边允曾就任新安令。中平元年(184年)十一月,凉州义从胡羌人北宫伯玉、李文侯及宋扬、王
  • 栗山千明栗山千明(日语:栗山 千明,1984年10月10日-),出生于日本茨城县土浦市,日本女模特儿、演员及歌手,毕业于日本音乐高等学校,与SPACE CRAFT(スペースクラフト)艺能事务所的合约于2020年到期