正则变换

✍ dations ◷ 2025-08-14 10:15:17 #经典力学,哈密顿力学,辛几何

在哈密顿力学里,正则变换(canonical transformation)是一种正则坐标的改变, ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,而同时维持哈密顿方程的形式,虽然哈密顿量可能会改变。正则变换是哈密顿-亚可比方程与刘维尔定理的基础。

点变换(point transformation)将广义坐标 q = ( q 1 ,   q 2 ,   ,   q N ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ \dots ,\ q_{N})} 变换成广义坐标 Q = ( Q 1 ,   Q 2 ,   ,   Q N ) {\displaystyle \mathbf {Q} =(Q_{1},\ Q_{2},\ \dots ,\ Q_{N})} ,点变换方程的形式为

其中, t {\displaystyle t} 是时间。

在哈密顿力学里,由于广义坐标与广义动量 p = ( p 1 ,   p 2 ,   ,   p N ) {\displaystyle \mathbf {p} =(p_{1},\ p_{2},\ \dots ,\ p_{N})} 同样地都是自变量(independent variable),点变换的定义可以加以延伸,使变换方程成为

其中, P = ( P 1 ,   P 2 ,   ,   P N ) {\displaystyle \mathbf {P} =(P_{1},\ P_{2},\ \dots ,\ P_{N})} 是新的广义动量。

为了分辨这两种不同的点变换,称前一种点变换为位形空间点变换,而后一种为相空间点变换。

在哈密顿力学里,正则变换将一组正则坐标 ( q ,   p ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )} 变换为一组新的正则坐标 ( Q ,   P ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} )} ,而同时维持哈密顿方程的形式(称为形式不变性)。原本的哈密顿方程为

新的哈密顿方程为

其中, H ( q ,   p ,   t ) {\displaystyle {\mathcal {H}}(\mathbf {q} ,\ \mathbf {p} ,\ t)} K ( Q ,   P ,   t ) {\displaystyle {\mathcal {K}}(\mathbf {Q} ,\ \mathbf {P} ,\ t)} 分别为原本的哈密顿量与新的哈密顿量。

思考一个物理系统的哈密顿量

假设哈密顿量跟其中一个广义坐标 q i {\displaystyle q_{i}} 无关,则称 q i {\displaystyle q_{i}} 为可略坐标(ignorable coordinate),或循环坐标(cyclic coordinate):

在哈密顿方程中,广义动量对于时间的导数是

所以,广义动量 p i {\displaystyle p_{i}} 是常数 k i {\displaystyle k_{i}}

假设一个系统里有 n {\displaystyle n} 个广义坐标是可略坐标。找出这 n {\displaystyle n} 个可略坐标,则可以使这系统减少 2 n {\displaystyle 2n} 个变数;使问题的困难度减少很多。正则变换可以用来寻找这一组可略坐标。

采取一种间接的方法,称为生成函数方法,从 ( q ,   p ,   H ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} ,\ {\mathcal {H}})} 变换到 ( Q ,   P ,   K ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} ,\ {\mathcal {K}})} 。为了要保证正则变换的正确性,第二组变数必须跟第一组变数一样地遵守哈密顿原理

那么,必须令

其中, σ {\displaystyle \sigma } 是标度因子, G {\displaystyle G} 是生成函数。

假若一个变换涉及标度因子,则称此变换为标度变换(scale transformation)。一般而言,标度因子不一定等于1。假若标度因子不等于1,则称此正则变换为延伸正则变换(extended canonical transformation);假若标度因子等于1,则称为正则变换。

任何延伸正则变换都可以修改为正则变换。假设一个 σ 1 {\displaystyle \sigma \neq 1} 的延伸正则变换表示为

则可以设定另外一组变数与哈密顿量: Q = α Q {\displaystyle \mathbf {Q} =\alpha \mathbf {Q} '} P = β P {\displaystyle \mathbf {P} =\beta \mathbf {P} '} K = α β K {\displaystyle {\mathcal {K}}=\alpha \beta {\mathcal {K}}\,'} G = α β G {\displaystyle G=\alpha \beta G\,'} ;其中, α ,   β {\displaystyle \alpha ,\ \beta } 是用来删除 σ {\displaystyle \sigma } 的常数, σ = 1 α β {\displaystyle \sigma ={\frac {1}{\alpha \beta }}} 。经过一番运算,可以得到

显然地,这变换符合哈密顿方程。所以,任何延伸正则变换都可以改变为正则变换。

假若正则变换不显性含时间,则称为设限正则变换(restricted canonical transformation)。

生成函数 G {\displaystyle G} 的参数,除了时间以外,一半是旧的正则坐标;另一半是新的正则坐标。视选择出来不同的变数而定,一共有四种基本的生成函数。每一种基本生成函数设定一种变换,从旧的一组正则坐标变换为新的一组正则坐标。这变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 保证是正则变换。

第一型生成函数 G 1 {\displaystyle G_{1}} 只跟旧广义坐标、新广义坐标有关,

代入方程(1)。展开生成函数对于时间的全导数,

新广义坐标 Q {\displaystyle \mathbf {Q} } 和旧广义坐标 q {\displaystyle \mathbf {q} } 都是自变量,其对于时间的全导数 Q ˙ {\displaystyle {\dot {\mathbf {Q} }}} q ˙ {\displaystyle {\dot {\mathbf {q} }}} 互相无关,所以,以下 2 N + 1 {\displaystyle 2N+1} 个方程都必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,步骤如下:

第一组的 N {\displaystyle N} 个方程(2),设定了 p {\displaystyle \mathbf {p} } N {\displaystyle N} 个函数方程

在理想情况下,这些方程可以逆算出 Q {\displaystyle \mathbf {Q} } N {\displaystyle N} 个函数方程

第二组的 N {\displaystyle N} 个方程(3),设定了 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

代入函数方程(5),可以算出 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

2 N {\displaystyle 2N} 个函数方程(5)、(6),可以逆算出 2 N {\displaystyle 2N} 个函数方程

代入新哈密顿量 K {\displaystyle {\mathcal {K}}} 的方程(4),可以得到

第二型生成函数 G 2 {\displaystyle G_{2}} 的参数是旧广义坐标 q {\displaystyle \mathbf {q} } 、新广义动量 P {\displaystyle \mathbf {P} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第三型生成函数 G 3 {\displaystyle G_{3}} 的参数是旧广义动量 p {\displaystyle \mathbf {p} } 、新广义坐标 Q {\displaystyle \mathbf {Q} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第四型生成函数 G 4 ( p , P , t ) {\displaystyle G_{4}(\mathbf {p} ,\mathbf {P} ,t)} 的参数是旧广义动量 p {\displaystyle \mathbf {p} } 、新广义动量 P {\displaystyle \mathbf {P} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第一型生成函数有一个特别简易案例:

生成函数的导数分别为

旧的哈密顿量与新的哈密顿量相同:

再举一个比较复杂的例子。让

这里, g {\displaystyle \mathbf {g} } 是一组 N {\displaystyle N} 个函数。

答案是一个广义坐标的点变换,

正则变换必须满足哈密顿方程不变;哈密顿方程为正则变换的一个不变式。另外,正则变换也有几个重要的不变量。

辛标记提供了一种既简单,又有效率的标记方法来展示方程及数学运算。设定一个 2 N × 1 {\displaystyle 2N\times 1} 的竖矩阵 ξ {\displaystyle {\boldsymbol {\xi }}}  :

变数矢量 ξ {\displaystyle {\boldsymbol {\xi }}} q {\displaystyle \mathbf {q} } p {\displaystyle \mathbf {p} } 包装在一起。这样,哈密顿方程可以简易的表示为

这里, Ω {\displaystyle {\boldsymbol {\Omega }}} 是辛连结矩阵、 H {\displaystyle {\mathcal {H}}} 是哈密顿量。

应用辛标记于正则变换,正则坐标会从旧正则坐标 ξ

相关

  • 幻影2000N幻影2000(Mirage 2000)为法国达索公司(Dassault)公司开发的第四代战斗机,是一款采用无水平尾翼三角翼设计及单发动机构型的多用途战机,目前包括法国、印度、中华民国在内共有8个国
  • 2001年–2010年这是一个2001年-2010年的完整载人航天飞行列表,其中包括后间的和平号空间站、航天飞机计划及国际空间站的开始。
  • San Francisco Chronicle《旧金山纪事报》(英语:San Francisco Chronicle,又称《旧金山新闻》)是北加利福尼亚地区发行量最大的报纸,同时也是美国发行量最大的报纸之一,订户主要集中在旧金山湾区,但该报发
  • 陈雪梅 (生物学家)陈雪梅(1966年-),女,黑龙江哈尔滨人,华裔美籍分子生物学家。加利福尼亚大学河滨分校教授。2011年6月入选美国霍华德·休斯医学研究所和戈登与贝蒂莫尔基金会研究员,并当选美国科学
  • 2002年4月逝世人物列表2002年逝世人物列表:1月 - 2月 - 3月 - 4月 - 5月 - 6月 - 7月 - 8月 - 9月 - 10月 - 11月 - 12月下面是2002年4月逝世的知名人士列表:
  • 忽那汐里忽那汐里(日语:くつな しおり,1992年12月22日-)日本女演员,出生于澳大利亚悉尼。2006年返回日本参加第11回全日本国民美少女比赛获得“审查员特别奖”,随即在日本发展演艺事业。 87
  • 大卫·沙逊图书馆大卫·沙逊图书馆(David Sassoon Library)是印度孟买的一座著名图书馆和遗产建筑。在市中心建立图书馆的想法是著名的巴格达犹太人慈善家大卫·沙逊的儿子阿尔伯特·大卫·沙
  • 复仇式色情复仇式色情(英语:Revenge porn)是一种未经过他人同意,任意散布含有他人色情内容之照片或影片等影像的报复手段。这些色情影像通常来自于与行为人具有亲密关系之伴侣,可能是在伴侣
  • 苏尼翁青年雕像苏尼翁青年雕像(英文:Sounion Kouros)是一个古希腊古风时期早期的青年雕像。该雕像比真实人体尺寸大,由大理石雕成,来自纳克索斯岛,约于公元前600年完成制作。该雕像修复后高3.05
  • 菲比·费洛菲比·费洛,O.B.E.(英语:Phoebe Philo,1973年1月1日-),是英国时装设计师,著名法国女性时装店思琳(Céline)品牌的创意总监(2008年-2018年)。1997年,她加入法国品牌蔻依(Chloé)成为史黛拉