正则变换

✍ dations ◷ 2025-10-20 17:22:55 #经典力学,哈密顿力学,辛几何

在哈密顿力学里,正则变换(canonical transformation)是一种正则坐标的改变, ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,而同时维持哈密顿方程的形式,虽然哈密顿量可能会改变。正则变换是哈密顿-亚可比方程与刘维尔定理的基础。

点变换(point transformation)将广义坐标 q = ( q 1 ,   q 2 ,   ,   q N ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ \dots ,\ q_{N})} 变换成广义坐标 Q = ( Q 1 ,   Q 2 ,   ,   Q N ) {\displaystyle \mathbf {Q} =(Q_{1},\ Q_{2},\ \dots ,\ Q_{N})} ,点变换方程的形式为

其中, t {\displaystyle t} 是时间。

在哈密顿力学里,由于广义坐标与广义动量 p = ( p 1 ,   p 2 ,   ,   p N ) {\displaystyle \mathbf {p} =(p_{1},\ p_{2},\ \dots ,\ p_{N})} 同样地都是自变量(independent variable),点变换的定义可以加以延伸,使变换方程成为

其中, P = ( P 1 ,   P 2 ,   ,   P N ) {\displaystyle \mathbf {P} =(P_{1},\ P_{2},\ \dots ,\ P_{N})} 是新的广义动量。

为了分辨这两种不同的点变换,称前一种点变换为位形空间点变换,而后一种为相空间点变换。

在哈密顿力学里,正则变换将一组正则坐标 ( q ,   p ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )} 变换为一组新的正则坐标 ( Q ,   P ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} )} ,而同时维持哈密顿方程的形式(称为形式不变性)。原本的哈密顿方程为

新的哈密顿方程为

其中, H ( q ,   p ,   t ) {\displaystyle {\mathcal {H}}(\mathbf {q} ,\ \mathbf {p} ,\ t)} K ( Q ,   P ,   t ) {\displaystyle {\mathcal {K}}(\mathbf {Q} ,\ \mathbf {P} ,\ t)} 分别为原本的哈密顿量与新的哈密顿量。

思考一个物理系统的哈密顿量

假设哈密顿量跟其中一个广义坐标 q i {\displaystyle q_{i}} 无关,则称 q i {\displaystyle q_{i}} 为可略坐标(ignorable coordinate),或循环坐标(cyclic coordinate):

在哈密顿方程中,广义动量对于时间的导数是

所以,广义动量 p i {\displaystyle p_{i}} 是常数 k i {\displaystyle k_{i}}

假设一个系统里有 n {\displaystyle n} 个广义坐标是可略坐标。找出这 n {\displaystyle n} 个可略坐标,则可以使这系统减少 2 n {\displaystyle 2n} 个变数;使问题的困难度减少很多。正则变换可以用来寻找这一组可略坐标。

采取一种间接的方法,称为生成函数方法,从 ( q ,   p ,   H ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} ,\ {\mathcal {H}})} 变换到 ( Q ,   P ,   K ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} ,\ {\mathcal {K}})} 。为了要保证正则变换的正确性,第二组变数必须跟第一组变数一样地遵守哈密顿原理

那么,必须令

其中, σ {\displaystyle \sigma } 是标度因子, G {\displaystyle G} 是生成函数。

假若一个变换涉及标度因子,则称此变换为标度变换(scale transformation)。一般而言,标度因子不一定等于1。假若标度因子不等于1,则称此正则变换为延伸正则变换(extended canonical transformation);假若标度因子等于1,则称为正则变换。

任何延伸正则变换都可以修改为正则变换。假设一个 σ 1 {\displaystyle \sigma \neq 1} 的延伸正则变换表示为

则可以设定另外一组变数与哈密顿量: Q = α Q {\displaystyle \mathbf {Q} =\alpha \mathbf {Q} '} P = β P {\displaystyle \mathbf {P} =\beta \mathbf {P} '} K = α β K {\displaystyle {\mathcal {K}}=\alpha \beta {\mathcal {K}}\,'} G = α β G {\displaystyle G=\alpha \beta G\,'} ;其中, α ,   β {\displaystyle \alpha ,\ \beta } 是用来删除 σ {\displaystyle \sigma } 的常数, σ = 1 α β {\displaystyle \sigma ={\frac {1}{\alpha \beta }}} 。经过一番运算,可以得到

显然地,这变换符合哈密顿方程。所以,任何延伸正则变换都可以改变为正则变换。

假若正则变换不显性含时间,则称为设限正则变换(restricted canonical transformation)。

生成函数 G {\displaystyle G} 的参数,除了时间以外,一半是旧的正则坐标;另一半是新的正则坐标。视选择出来不同的变数而定,一共有四种基本的生成函数。每一种基本生成函数设定一种变换,从旧的一组正则坐标变换为新的一组正则坐标。这变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 保证是正则变换。

第一型生成函数 G 1 {\displaystyle G_{1}} 只跟旧广义坐标、新广义坐标有关,

代入方程(1)。展开生成函数对于时间的全导数,

新广义坐标 Q {\displaystyle \mathbf {Q} } 和旧广义坐标 q {\displaystyle \mathbf {q} } 都是自变量,其对于时间的全导数 Q ˙ {\displaystyle {\dot {\mathbf {Q} }}} q ˙ {\displaystyle {\dot {\mathbf {q} }}} 互相无关,所以,以下 2 N + 1 {\displaystyle 2N+1} 个方程都必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,步骤如下:

第一组的 N {\displaystyle N} 个方程(2),设定了 p {\displaystyle \mathbf {p} } N {\displaystyle N} 个函数方程

在理想情况下,这些方程可以逆算出 Q {\displaystyle \mathbf {Q} } N {\displaystyle N} 个函数方程

第二组的 N {\displaystyle N} 个方程(3),设定了 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

代入函数方程(5),可以算出 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

2 N {\displaystyle 2N} 个函数方程(5)、(6),可以逆算出 2 N {\displaystyle 2N} 个函数方程

代入新哈密顿量 K {\displaystyle {\mathcal {K}}} 的方程(4),可以得到

第二型生成函数 G 2 {\displaystyle G_{2}} 的参数是旧广义坐标 q {\displaystyle \mathbf {q} } 、新广义动量 P {\displaystyle \mathbf {P} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第三型生成函数 G 3 {\displaystyle G_{3}} 的参数是旧广义动量 p {\displaystyle \mathbf {p} } 、新广义坐标 Q {\displaystyle \mathbf {Q} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第四型生成函数 G 4 ( p , P , t ) {\displaystyle G_{4}(\mathbf {p} ,\mathbf {P} ,t)} 的参数是旧广义动量 p {\displaystyle \mathbf {p} } 、新广义动量 P {\displaystyle \mathbf {P} } 与时间:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第一型生成函数有一个特别简易案例:

生成函数的导数分别为

旧的哈密顿量与新的哈密顿量相同:

再举一个比较复杂的例子。让

这里, g {\displaystyle \mathbf {g} } 是一组 N {\displaystyle N} 个函数。

答案是一个广义坐标的点变换,

正则变换必须满足哈密顿方程不变;哈密顿方程为正则变换的一个不变式。另外,正则变换也有几个重要的不变量。

辛标记提供了一种既简单,又有效率的标记方法来展示方程及数学运算。设定一个 2 N × 1 {\displaystyle 2N\times 1} 的竖矩阵 ξ {\displaystyle {\boldsymbol {\xi }}}  :

变数矢量 ξ {\displaystyle {\boldsymbol {\xi }}} q {\displaystyle \mathbf {q} } p {\displaystyle \mathbf {p} } 包装在一起。这样,哈密顿方程可以简易的表示为

这里, Ω {\displaystyle {\boldsymbol {\Omega }}} 是辛连结矩阵、 H {\displaystyle {\mathcal {H}}} 是哈密顿量。

应用辛标记于正则变换,正则坐标会从旧正则坐标 ξ

相关

  • 西阿塞拜疆西阿塞拜疆省(波斯语:آذربایجان غربی)是伊朗三十一个省份之一。面积37,463公里,在所有省份中排行第11。人口约2,949,400(2005年数据);首府位于乌尔米耶市。该省居民大
  • 决定脱离欧盟英国去留欧盟公投(英语:The United Kingdom European Union membership referendum)是英国国内就其欧盟成员资格去留问题于2016年6月23日举行的公投。通称“英国脱欧公投”(Brex
  • 大洋州大洋洲(英语:Oceania),是指地缘政治学,将澳大利亚洲与太平洋诸岛屿并称的地理区域,大洋洲并不是地质学上严格意义的“大洲”,占全球总陆地面积的6%。在4万至12万5千年前,澳大利亚土
  • 朱载堉《乐律全书》、《律吕正论》、《律吕质疑辨惑》、《嘉量算经》、《律吕精义》、《律历融通》、《算学新说》、《瑟谱》朱载堉(1536年-1611年),字伯勤,号句曲山人、九峰山人。明宗
  • 塔那托斯塔那托斯(θάνατος / Thanatos,“死亡”)是希腊神话中的死神,罗马神话中称为Mors,他是睡神许普诺斯的孪生兄弟,其母为黑夜女神倪克斯。另有一说是,他是厄洛斯(即罗马神话中的
  • 亚戈尔利克河亚戈尔利克河(乌克兰语:Ягорлик),是东欧的河流,流经乌克兰和摩尔多瓦,属于德涅斯特河的左支流,发源自斯洛比德卡附近,河道全长73公里,流域面积1,590平方公里。
  • 2002年金马国际影展2002年金马国际影展是在2002年11月1日至11月16日,于台湾的台北举办。参展影片如下:
  • 外弹道外弹道是指抛射物(比如弹头、炮弹等)离开其发射装置(比如枪械和火炮的身管)后进行自由飞行时的运动轨迹,俗称的“弹道”一般就是专指外弹道。外弹道学(external ballistics)则是弹
  • 晁冲之晁冲之(?-?),字叔用,一字用道,钜野(今山东钜野)人,晁补之从弟,南宋晁公武之父。晁补之从弟,科举不第。早年曾受业于陈师道,自称“九岁一门生”,与吕本中交善,后隐居于阳翟(今河南禹县)具茨山,人
  • 贝特朗·马里·德莱塞普贝特朗·马里·德莱塞普(法语:Bertrand Marie de Lesseps,1875年2月3日-1918年8月28日),法国男子击剑运动员,他曾经代表该国参加1908年夏季奥林匹克运动会佩剑个人和团体项目,后来于