蒙特卡洛树搜索(英语:Monte Carlo tree search;简称:MCTS)是一种用于某些决策过程的启发式搜索算法,最引人注目的是在游戏中的使用。一个主要例子是电脑围棋程序,它也用于其他棋盘游戏、即时电子游戏以及不确定性游戏。
基于随机抽样的蒙特卡洛方法可以追溯到20世纪40年代。布鲁斯·艾布拉姆森(Bruce Abramson)在他1987年的博士论文中探索了这一想法,称它“展示出了准确、精密、易估、有效可计算以及域独立的特性“。他深入试验了井字棋,然后试验了黑白棋和国际象棋的机器生成的评估函数。1992年,B·布鲁格曼(B. Brügmann)首次将其应用于对弈程序,但他的想法未获得重视。2006年堪称围棋领域蒙特卡洛革命的一年,雷米·库洛姆(Remi Coulom)描述了蒙特卡洛方法在游戏树搜索的应用并命名为蒙特卡洛树搜索。列文特·科奇什(Levente Kocsis)和乔鲍·塞派什瓦里(Csaba Szepesvári)开发了UCT算法,西尔万·热利(Sylvain Gelly)等人在他们的程序MoGo中实现了UCT。2008年,MoGo在九路围棋中达到段位水平,Fuego程序开始在九路围棋中战胜实力强劲的业余棋手。2012年1月,Zen程序在19路围棋上以3:1击败二段棋手约翰·特朗普(John Tromp)。
蒙特卡洛树搜索也被用于其他棋盘游戏程序,如六贯棋、三宝棋、亚马逊棋和印度斗兽棋;即时电子游戏,如《吃豆小姐(英语:Ms. Pac-Man)》、《神鬼寓言:传奇(英语:Fable Legends)》、《罗马II:全面战争》;不确定性游戏,如斯卡特、扑克、万智牌、卡坦岛。
蒙特卡洛树搜索的每个循环包括四个步骤:
每一个节点的内容代表
选择子结点的主要困难是:在较高平均胜率的移动后,在对深层次变型的利用和对少数模拟移动的探索,这二者中保持某种平衡。第一个在游戏中平衡利用与探索的公式被称为UCT(Upper Confidence Bounds to Trees,上限置信区间算法 ),由匈牙利国家科学院计算机与自动化研究所高级研究员列文特·科奇什与阿尔伯塔大学全职教授乔鲍·塞派什瓦里提出。UCT基于奥尔(Auer)、西萨-比安奇(Cesa-Bianchi)和费舍尔(Fischer)提出的UCB1公式,并首次由马库斯等人应用于多级决策模型(具体为马尔可夫决策过程)。科奇什和塞派什瓦里建议选择游戏树中的每个结点移动,从而使表达式 具有最大值。在该式中:
大多数当代蒙特卡洛树搜索的实现都是基于UCT的一些变形。